Regression analysis of variates observed on (0, 1): percentages, proportions and fractions

R. Kieschnick, Bruce D. McCullough
{"title":"Regression analysis of variates observed on (0, 1): percentages, proportions and fractions","authors":"R. Kieschnick, Bruce D. McCullough","doi":"10.1191/1471082X03st053oa","DOIUrl":null,"url":null,"abstract":"Many types of studies examine the influence of selected variables on the conditional expectation of a proportion or vector of proportions, for example, market shares, rock composition, and so on. We identify four distributional categories into which such data can be put, and focus on regression models for the first category, for proportions observed on the open interval (0, 1). For these data, we identify different specifications used in prior research and compare these specifications using two common samples and specifications of the regressors. Based upon our analysis, we recommend that researchers use either a parametric regression model based upon the beta distribution or a quasi-likelihood regression model developed by Papke and Wooldridge (1997) for these data. Concerning the choice between these two regression models, we recommend that researchers use the parametric regression model unless their sample size is large enough to justify the asymptotic arguments underlying the quasi-likelihood approach.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"461","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st053oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 461

Abstract

Many types of studies examine the influence of selected variables on the conditional expectation of a proportion or vector of proportions, for example, market shares, rock composition, and so on. We identify four distributional categories into which such data can be put, and focus on regression models for the first category, for proportions observed on the open interval (0, 1). For these data, we identify different specifications used in prior research and compare these specifications using two common samples and specifications of the regressors. Based upon our analysis, we recommend that researchers use either a parametric regression model based upon the beta distribution or a quasi-likelihood regression model developed by Papke and Wooldridge (1997) for these data. Concerning the choice between these two regression models, we recommend that researchers use the parametric regression model unless their sample size is large enough to justify the asymptotic arguments underlying the quasi-likelihood approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在(0,1)上观察到的变量的回归分析:百分比,比例和分数
许多类型的研究检查选定变量对比例或比例矢量的条件期望的影响,例如,市场份额、岩石成分等。我们确定了可以放入这些数据的四个分布类别,并将重点放在第一类的回归模型上,即在开放区间(0,1)上观察到的比例。对于这些数据,我们确定了先前研究中使用的不同规格,并使用两个常见样本和回归量的规格比较这些规格。根据我们的分析,我们建议研究人员使用基于beta分布的参数回归模型或由Papke和Wooldridge(1997)开发的准似然回归模型来处理这些数据。关于这两种回归模型之间的选择,我们建议研究人员使用参数回归模型,除非他们的样本量足够大,足以证明准似然方法背后的渐近论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1