On-line sliding-window Levenberg-Marquardt methods for neural network models

P. Ferreira, A. Ruano
{"title":"On-line sliding-window Levenberg-Marquardt methods for neural network models","authors":"P. Ferreira, A. Ruano","doi":"10.1109/WISP.2007.4447542","DOIUrl":null,"url":null,"abstract":"On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络模型的在线滑动窗口Levenberg-Marquardt方法
当要建模的过程是时变的,或者当不可能获得覆盖整个操作区域的离线数据时,需要在线学习算法。为了最大限度地减少参数阴影和干扰问题,采用了基于滑动的算法。结果表明,通过使用滑动窗口策略来加强存储在滑动窗口中的数据的新颖性,并通过使用一个过程来防止不必要的参数更新,所取得的性能比具有固定参数更新的FIFO策略有所提高。还获得了重要的计算工作量节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1