Path planning for reconnaissance UAV based on Particle Swarm Optimization

Yong Bao, Xiaowei Fu, Xiao-guang Gao
{"title":"Path planning for reconnaissance UAV based on Particle Swarm Optimization","authors":"Yong Bao, Xiaowei Fu, Xiao-guang Gao","doi":"10.1109/CINC.2010.5643794","DOIUrl":null,"url":null,"abstract":"This paper presents a method of fixed-point reconnaissance path planning for Unmanned Aerial Vehicle(UAV). In this method, Particle Swarm Optimization(PSO) is introduced into reconnaissance UAV path planning algorithm, and targets value, effective reconnaissance path and other factors that impact UAV path planning are included in the objective function of PSO. The optimal solution of reconnaissance path is obtained by optimizing of PSO. At last, the simulation is carried out and satisfactory results are achieved.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

This paper presents a method of fixed-point reconnaissance path planning for Unmanned Aerial Vehicle(UAV). In this method, Particle Swarm Optimization(PSO) is introduced into reconnaissance UAV path planning algorithm, and targets value, effective reconnaissance path and other factors that impact UAV path planning are included in the objective function of PSO. The optimal solution of reconnaissance path is obtained by optimizing of PSO. At last, the simulation is carried out and satisfactory results are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的侦察无人机路径规划
提出了一种无人机定点侦察路径规划方法。该方法将粒子群优化(Particle Swarm Optimization, PSO)引入到侦察无人机路径规划算法中,将目标值、有效侦察路径等影响无人机路径规划的因素纳入到PSO的目标函数中。利用粒子群优化算法得到了侦察路径的最优解。最后进行了仿真,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1