Multiple data structure discovery through global optimisation, meta clustering and consensus methods

Ida Bifulco, Carmine Fedullo, F. Napolitano, G. Raiconi, R. Tagliaferri
{"title":"Multiple data structure discovery through global optimisation, meta clustering and consensus methods","authors":"Ida Bifulco, Carmine Fedullo, F. Napolitano, G. Raiconi, R. Tagliaferri","doi":"10.1504/IJKESDP.2009.028984","DOIUrl":null,"url":null,"abstract":"When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. In this work we propose a systematic approach to clustering, including the generation of a number of good solutions through global optimisation, the analysis of such solutions through meta clustering and the final construction of a small set of solutions through consensus clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过全局优化、元聚类和共识方法发现多个数据结构
在处理真实数据时,聚类成为一个非常复杂的问题,通常需要许多合理的解决方案。此外,即使完全不同,从经典质量测量(如失真值)的角度来看,这些解决方案也几乎是等效的。这意味着盲目的优化技术本身很容易丢弃有趣的解决方案。在这项工作中,我们提出了一种系统的聚类方法,包括通过全局优化生成一些好的解决方案,通过元聚类分析这些解决方案,以及通过共识聚类最终构建一小部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning combined features for automatic facial expression recognition An efficient similarity search using a combination between descriptors: a case of study in human face recognition Visual content summarisation for instructional videos using AdaBoost and SIFT Role-based access control in BagTrac application Fuzzy detection orange tree leaves diseases using a co-occurrence matrix-based K-nearest neighbours classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1