Lasguido Nio, S. Sakti, Graham Neubig, T. Toda, Satoshi Nakamura
{"title":"Recursive neural network paraphrase identification for example-based dialog retrieval","authors":"Lasguido Nio, S. Sakti, Graham Neubig, T. Toda, Satoshi Nakamura","doi":"10.1109/APSIPA.2014.7041777","DOIUrl":null,"url":null,"abstract":"An example-based dialog model often require a lot of data collections to achieve a good performance. However, when it comes on handling an out of vocabulary (OOV) database queries, this approach resulting in weakness and inadequate handling of interactions between words in the sentence. In this work, we try to overcome this problem by utilizing recursive neural network paraphrase identification to improve the robustness of example-based dialog response retrieval. We model our dialog-pair database and user input query with distributed word representations, and employ recursive autoencoders and dynamic pooling to determine whether two sentences with arbitrary length have the same meaning. The distributed representations have the potential to improve handling of OOV cases, and the recursive structure can reduce confusion in example matching.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An example-based dialog model often require a lot of data collections to achieve a good performance. However, when it comes on handling an out of vocabulary (OOV) database queries, this approach resulting in weakness and inadequate handling of interactions between words in the sentence. In this work, we try to overcome this problem by utilizing recursive neural network paraphrase identification to improve the robustness of example-based dialog response retrieval. We model our dialog-pair database and user input query with distributed word representations, and employ recursive autoencoders and dynamic pooling to determine whether two sentences with arbitrary length have the same meaning. The distributed representations have the potential to improve handling of OOV cases, and the recursive structure can reduce confusion in example matching.