Trend-following trading using recursive stochastic optimization algorithms

D. Nguyen, G. Yin, Qing Zhang
{"title":"Trend-following trading using recursive stochastic optimization algorithms","authors":"D. Nguyen, G. Yin, Qing Zhang","doi":"10.1109/CDC.2013.6761132","DOIUrl":null,"url":null,"abstract":"This work develops with trend following trading strategies under a bull-bear market switching model. The asset model is assumed to be geometric Brownian motion type of process, in which drift of the stock price is allowed to switch between two parameters corresponding to an up-trend (bull market) and a downtrend (bear market) corresponding to a partially observable Markov chain. Our objective is to buy and sell the underlying stock to maximize an expected return. It is shown in [6], [7] that an optimal trading strategy can be obtained in terms of two threshold levels, but finding the threshold levels is a difficult task. In this paper, we develop a stochastic approximation algorithm to approximate the threshold levels. The main advantage of our method is that one need not solve the associated HamiltonJacobiBellman (HJB) equations. We establish the convergence of the algorithm and provide numerical examples to illustrate the results.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6761132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work develops with trend following trading strategies under a bull-bear market switching model. The asset model is assumed to be geometric Brownian motion type of process, in which drift of the stock price is allowed to switch between two parameters corresponding to an up-trend (bull market) and a downtrend (bear market) corresponding to a partially observable Markov chain. Our objective is to buy and sell the underlying stock to maximize an expected return. It is shown in [6], [7] that an optimal trading strategy can be obtained in terms of two threshold levels, but finding the threshold levels is a difficult task. In this paper, we develop a stochastic approximation algorithm to approximate the threshold levels. The main advantage of our method is that one need not solve the associated HamiltonJacobiBellman (HJB) equations. We establish the convergence of the algorithm and provide numerical examples to illustrate the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
趋势跟踪交易使用递归随机优化算法
在牛熊转换模型下,采用趋势跟随交易策略进行研究。资产模型假定为几何布朗运动类型的过程,其中股票价格的漂移允许在两个参数之间切换,对应于上行趋势(牛市)和下行趋势(熊市),对应于部分可观察的马尔可夫链。我们的目标是买卖标的股票以获得最大的预期回报。由[6]、[7]可知,在两种阈值水平下都可以得到最优交易策略,但找到阈值水平是一项困难的任务。在本文中,我们开发了一种随机逼近算法来逼近阈值水平。该方法的主要优点是不需要求解相关的hamilton - jacobibellman (HJB)方程。我们建立了算法的收敛性,并给出了数值例子来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandits with budgets Decentralized control of partially observable Markov decision processes Torque allocation in electric vehicles with in-wheel motors: A performance-oriented approach A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus Graphical FPGA design for a predictive controller with application to spacecraft rendezvous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1