K-means clustering with adaptive threshold for segmentation of hand images

Sheifalee Trivedi, B. Nandwana, D. Khunteta, S. Narayan
{"title":"K-means clustering with adaptive threshold for segmentation of hand images","authors":"Sheifalee Trivedi, B. Nandwana, D. Khunteta, S. Narayan","doi":"10.1109/CSNT.2017.8418534","DOIUrl":null,"url":null,"abstract":"As we all know an image is an artifact that depicts visual perception. In order to extract information or modify those images we have to perform some operation on it. In this paper we present a methodology to segment hand images using modified k-means clustering with value of threshold and analysis of histogram. Experimental results show 97% accurate results so we can say proposed methodology is better then previous.","PeriodicalId":382417,"journal":{"name":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Communication Systems and Network Technologies (CSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2017.8418534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As we all know an image is an artifact that depicts visual perception. In order to extract information or modify those images we have to perform some operation on it. In this paper we present a methodology to segment hand images using modified k-means clustering with value of threshold and analysis of histogram. Experimental results show 97% accurate results so we can say proposed methodology is better then previous.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应阈值的k均值聚类手部图像分割
我们都知道,图像是一种描绘视觉感知的人工制品。为了提取信息或修改这些图像,我们必须对其进行一些操作。本文提出了一种基于阈值和直方图分析的改进k均值聚类方法对手图像进行分割。实验结果表明,该方法的准确率为97%,优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart input: Provide mouse and keyboard input to a PC from android devices A hybrid approach for human skin detection Correlating multiple events and data in an ethernet network Data visualization through R and Azure for scaling machine training sets Robust machine learning of the complex-valued neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1