Investigating the Translation Performance of a Large Multilingual Language Model: the Case of BLOOM

Rachel Bawden, Franccois Yvon
{"title":"Investigating the Translation Performance of a Large Multilingual Language Model: the Case of BLOOM","authors":"Rachel Bawden, Franccois Yvon","doi":"10.48550/arXiv.2303.01911","DOIUrl":null,"url":null,"abstract":"The NLP community recently saw the release of a new large open-access multilingual language model, BLOOM (BigScience et al., 2022) covering 46 languages. We focus on BLOOM’s multilingual ability by evaluating its machine translation performance across several datasets (WMT, Flores-101 and DiaBLa) and language pairs (high- and low-resourced). Our results show that 0-shot performance suffers from overgeneration and generating in the wrong language, but this is greatly improved in the few-shot setting, with very good results for a number of language pairs. We study several aspects including prompt design, model sizes, cross-lingual transfer and the use of discursive context.","PeriodicalId":137211,"journal":{"name":"European Association for Machine Translation Conferences/Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Association for Machine Translation Conferences/Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.01911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The NLP community recently saw the release of a new large open-access multilingual language model, BLOOM (BigScience et al., 2022) covering 46 languages. We focus on BLOOM’s multilingual ability by evaluating its machine translation performance across several datasets (WMT, Flores-101 and DiaBLa) and language pairs (high- and low-resourced). Our results show that 0-shot performance suffers from overgeneration and generating in the wrong language, but this is greatly improved in the few-shot setting, with very good results for a number of language pairs. We study several aspects including prompt design, model sizes, cross-lingual transfer and the use of discursive context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型多语言模型的翻译性能研究:以BLOOM为例
NLP社区最近发布了一个新的大型开放获取多语言模型BLOOM (BigScience et al., 2022),涵盖46种语言。我们通过评估BLOOM在多个数据集(WMT, Flores-101和DiaBLa)和语言对(高资源和低资源)上的机器翻译性能来关注BLOOM的多语言能力。我们的结果表明,0次射击的性能会受到过度生成和错误语言生成的影响,但在少数射击设置中,这种情况得到了极大的改善,对于许多语言对都有很好的结果。我们研究了几个方面,包括提示设计,模型大小,跨语言迁移和语篇语境的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Human Translator Style into English-Turkish Literary Machine Translation Automatic Discrimination of Human and Neural Machine Translation in Multilingual Scenarios Investigating Lexical Sharing in Multilingual Machine Translation for Indian Languages State Spaces Aren’t Enough: Machine Translation Needs Attention An Empirical Study of Leveraging Knowledge Distillation for Compressing Multilingual Neural Machine Translation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1