Designing associative memories implemented via recurrent neural networks for pattern recognition

J. Hernández, M. U. Suarez-Duran, R. García-Hernández, E. Shelomov, E. N. Sánchez
{"title":"Designing associative memories implemented via recurrent neural networks for pattern recognition","authors":"J. Hernández, M. U. Suarez-Duran, R. García-Hernández, E. Shelomov, E. N. Sánchez","doi":"10.1109/IJCNN.2011.6033563","DOIUrl":null,"url":null,"abstract":"In this paper a recurrent neural network is used as associative memory for pattern recognition. The goal of associative memory is to retrieve a stored pattern when enough information is presented in the network input. The network is training with twelve bipolar patterns to determine the corresponding weights. The weights are calculated by means of support vector machines training algorithms as the optimal hyperplane and soft margin hyperplane. Once the neural network is trained its performance is evaluated to retrieval stored patterns which correspond to characters encoded as bipolar vectors.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a recurrent neural network is used as associative memory for pattern recognition. The goal of associative memory is to retrieve a stored pattern when enough information is presented in the network input. The network is training with twelve bipolar patterns to determine the corresponding weights. The weights are calculated by means of support vector machines training algorithms as the optimal hyperplane and soft margin hyperplane. Once the neural network is trained its performance is evaluated to retrieval stored patterns which correspond to characters encoded as bipolar vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的模式识别联想记忆设计
本文将递归神经网络作为联想记忆进行模式识别。联想记忆的目标是在网络输入中提供足够的信息时检索存储的模式。该网络正在用12个双极模式进行训练,以确定相应的权重。利用支持向量机训练算法作为最优超平面和软边缘超平面计算权重。神经网络经过训练后,其性能被评估为检索存储模式,这些模式对应于编码为双极向量的字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1