Modeling technology for (T,p)-/spl rho/ table in mass flow-meter

Han Jian-guo, Wu You-Hua, Liu Jiu-Xi
{"title":"Modeling technology for (T,p)-/spl rho/ table in mass flow-meter","authors":"Han Jian-guo, Wu You-Hua, Liu Jiu-Xi","doi":"10.1109/SICE.2000.889659","DOIUrl":null,"url":null,"abstract":"A method based on the training technology of a fuzzy inference adaptive artificial neural network and nonlinear least-square (linear in structure) system identification technology for modeling the (T,P)-/spl rho/ table for a mass flow-meter is introduced. The model has several advantages such as saving calculation workload and storage space, having essential filterability. Thus the method is an effective help for the current development of high-degree integration technology of measuring and instrumentation.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method based on the training technology of a fuzzy inference adaptive artificial neural network and nonlinear least-square (linear in structure) system identification technology for modeling the (T,P)-/spl rho/ table for a mass flow-meter is introduced. The model has several advantages such as saving calculation workload and storage space, having essential filterability. Thus the method is an effective help for the current development of high-degree integration technology of measuring and instrumentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质量流量计(T,p)-/spl rho/表的建模技术
介绍了一种基于模糊推理自适应人工神经网络训练技术和非线性最小二乘(线性结构)系统辨识技术的质量流量计(T,P)-/spl rho/表建模方法。该模型具有节省计算量和存储空间、具有良好的可过滤性等优点。因此,该方法为当前测量仪器高度集成技术的发展提供了有效的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tension control of wire suspended mechanism and application to bathroom cleaning robot Forgetting least squares estimation FIR filters without noise covariance information A study on distributed SMA-net robot control by coupled oscillator system A gatesize computing method in target tracking Attitude controller design for a launch vehicle with fuel-slosh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1