Mining Auto-generated Test Inputs for Test Oracle

Weifeng Xu, Hanlin Wang, Tao Ding
{"title":"Mining Auto-generated Test Inputs for Test Oracle","authors":"Weifeng Xu, Hanlin Wang, Tao Ding","doi":"10.1109/ITNG.2013.126","DOIUrl":null,"url":null,"abstract":"A Search-based test input generator produces a high volume of auto-generated test inputs. However, manually checking a test oracle for these test inputs is impractical due to the lacking of a systematic way to produce corresponding expected results automatically. This paper presents a mining approach to build decision tree models containing the estimated expected results for checking a test oracle. We first choose a subset of the auto-generated test inputs as a training set. Then, we mine the training set to generate a decision tree from which the estimated expected results can be retrieved. For evaluation purpose, we have applied our approach to two legacy examples, Triangle and Next Date. Our controlled experiments have shown that the mining approach is able to generate highly accurate behavioral models and achieve strong fault detectability.","PeriodicalId":320262,"journal":{"name":"2013 10th International Conference on Information Technology: New Generations","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2013.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A Search-based test input generator produces a high volume of auto-generated test inputs. However, manually checking a test oracle for these test inputs is impractical due to the lacking of a systematic way to produce corresponding expected results automatically. This paper presents a mining approach to build decision tree models containing the estimated expected results for checking a test oracle. We first choose a subset of the auto-generated test inputs as a training set. Then, we mine the training set to generate a decision tree from which the estimated expected results can be retrieved. For evaluation purpose, we have applied our approach to two legacy examples, Triangle and Next Date. Our controlled experiments have shown that the mining approach is able to generate highly accurate behavioral models and achieve strong fault detectability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为Test Oracle挖掘自动生成的测试输入
基于搜索的测试输入生成器生成大量自动生成的测试输入。然而,手动检查这些测试输入的测试oracle是不切实际的,因为缺乏一种系统的方法来自动产生相应的预期结果。本文提出了一种挖掘方法来构建包含测试oracle的估计预期结果的决策树模型。我们首先选择自动生成的测试输入的一个子集作为训练集。然后,我们挖掘训练集以生成决策树,从中可以检索到估计的期望结果。出于评估的目的,我们将我们的方法应用于两个遗留示例:Triangle和Next Date。我们的控制实验表明,该方法能够生成高精度的行为模型,并实现较强的故障检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A User-centric Approach towards Understanding the Influences of Social Tags Choices for Academic Papers Forecasting Wet Land Rice Production for Food Security A Study on the Bootstrapping Architectures for Scalable Private Reappearing Overlay Network Software Safety and Security for Programmable Logic Controllers Text-to-Onto Miner: A Concept Driven and Interval Controlled Ontology Builder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1