Image Recognition with MapReduce Based Convolutional Neural Networks

Jackie Leung, Min Chen
{"title":"Image Recognition with MapReduce Based Convolutional Neural Networks","authors":"Jackie Leung, Min Chen","doi":"10.1109/UEMCON47517.2019.8992932","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have gained global recognition in advancing the field of artificial intelligence and have had great successes in a wide array of applications including computer vision, speech and natural language processing. However, due to the rise of big data and increased complexity of tasks, the efficiency of training CNNs have been severely impacted. To achieve state-of-art results, CNNs require tens to hundreds of millions of parameters that need to be fine-tuned, resulting in extensive training time and high computational cost. To overcome these obstacles, this work takes advantage of distributed frameworks and cloud computing to develop a parallel CNN algorithm. Close examination of the implementation of MapReduce based CNNs as well as how the proposed algorithm accelerates learning are discussed and demonstrated through experiments. Results reveal high accuracy in classification and improvements in speedup, scaleup and sizeup compared to the standard algorithm.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8992932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Convolutional neural networks (CNNs) have gained global recognition in advancing the field of artificial intelligence and have had great successes in a wide array of applications including computer vision, speech and natural language processing. However, due to the rise of big data and increased complexity of tasks, the efficiency of training CNNs have been severely impacted. To achieve state-of-art results, CNNs require tens to hundreds of millions of parameters that need to be fine-tuned, resulting in extensive training time and high computational cost. To overcome these obstacles, this work takes advantage of distributed frameworks and cloud computing to develop a parallel CNN algorithm. Close examination of the implementation of MapReduce based CNNs as well as how the proposed algorithm accelerates learning are discussed and demonstrated through experiments. Results reveal high accuracy in classification and improvements in speedup, scaleup and sizeup compared to the standard algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MapReduce的卷积神经网络图像识别
卷积神经网络(cnn)在推动人工智能领域的发展方面获得了全球的认可,并在包括计算机视觉、语音和自然语言处理在内的广泛应用中取得了巨大成功。然而,由于大数据的兴起和任务复杂性的增加,cnn的训练效率受到了严重的影响。为了达到最先进的结果,cnn需要数千万到数亿个需要微调的参数,这导致了大量的训练时间和高昂的计算成本。为了克服这些障碍,本工作利用分布式框架和云计算来开发并行CNN算法。仔细研究了基于MapReduce的cnn的实现,以及所提出的算法如何加速学习,并通过实验进行了讨论和演示。结果表明,与标准算法相比,该算法具有较高的分类准确率,并且在加速、放大和大小方面都有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1