jTrans: jump-aware transformer for binary code similarity detection

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, Chao Zhang
{"title":"jTrans: jump-aware transformer for binary code similarity detection","authors":"Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, Chao Zhang","doi":"10.1145/3533767.3534367","DOIUrl":null,"url":null,"abstract":"Binary code similarity detection (BCSD) has important applications in various fields such as vulnerabilities detection, software component analysis, and reverse engineering. Recent studies have shown that deep neural networks (DNNs) can comprehend instructions or control-flow graphs (CFG) of binary code and support BCSD. In this study, we propose a novel Transformer-based approach, namely jTrans, to learn representations of binary code. It is the first solution that embeds control flow information of binary code into Transformer-based language models, by using a novel jump-aware representation of the analyzed binaries and a newly-designed pre-training task. Additionally, we release to the community a newly-created large dataset of binaries, BinaryCorp, which is the most diverse to date. Evaluation results show that jTrans outperforms state-of-the-art (SOTA) approaches on this more challenging dataset by 30.5% (i.e., from 32.0% to 62.5%). In a real-world task of known vulnerability searching, jTrans achieves a recall that is 2X higher than existing SOTA baselines.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Binary code similarity detection (BCSD) has important applications in various fields such as vulnerabilities detection, software component analysis, and reverse engineering. Recent studies have shown that deep neural networks (DNNs) can comprehend instructions or control-flow graphs (CFG) of binary code and support BCSD. In this study, we propose a novel Transformer-based approach, namely jTrans, to learn representations of binary code. It is the first solution that embeds control flow information of binary code into Transformer-based language models, by using a novel jump-aware representation of the analyzed binaries and a newly-designed pre-training task. Additionally, we release to the community a newly-created large dataset of binaries, BinaryCorp, which is the most diverse to date. Evaluation results show that jTrans outperforms state-of-the-art (SOTA) approaches on this more challenging dataset by 30.5% (i.e., from 32.0% to 62.5%). In a real-world task of known vulnerability searching, jTrans achieves a recall that is 2X higher than existing SOTA baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二进制代码相似度检测的跳转感知变压器
二进制代码相似度检测(BCSD)在漏洞检测、软件组件分析、逆向工程等领域有着重要的应用。近年来的研究表明,深度神经网络(dnn)可以理解二进制代码的指令或控制流图(CFG),并支持BCSD。在这项研究中,我们提出了一种新的基于转换器的方法,即jTrans,来学习二进制代码的表示。这是第一个将二进制代码的控制流信息嵌入到基于transformer的语言模型中的解决方案,该方案使用了一种新的跳跃感知表示分析二进制代码和新设计的预训练任务。此外,我们向社区发布了一个新创建的大型二进制数据集BinaryCorp,这是迄今为止最多样化的。评估结果显示,在这个更具挑战性的数据集上,jTrans比最先进的(SOTA)方法高出30.5%(即从32.0%到62.5%)。在已知漏洞搜索的真实任务中,jTrans实现了比现有SOTA基线高2倍的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One step further: evaluating interpreters using metamorphic testing Faster mutation analysis with MeMu Test mimicry to assess the exploitability of library vulnerabilities A large-scale study of usability criteria addressed by static analysis tools NCScope: hardware-assisted analyzer for native code in Android apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1