Analysing Selfishness Flooding with SEINE

Guido Lena Cota, Sonia Ben Mokhtar, G. Gianini, E. Damiani, J. Lawall, Gilles Muller, L. Brunie
{"title":"Analysing Selfishness Flooding with SEINE","authors":"Guido Lena Cota, Sonia Ben Mokhtar, G. Gianini, E. Damiani, J. Lawall, Gilles Muller, L. Brunie","doi":"10.1109/DSN.2017.51","DOIUrl":null,"url":null,"abstract":"Selfishness is one of the key problems that confronts developers of cooperative distributed systems (e.g., file-sharing networks, voluntary computing). It has the potential to severely degrade system performance and to lead to instability and failures. Current techniques for understanding the impact of selfish behaviours and designing effective countermeasures remain manual and time-consuming, requiring multi-domain expertise. To overcome these difficulties, we propose SEINE, a simulation framework for rapid modelling and evaluation of selfish behaviours in a cooperative system. SEINE relies on a domain-specific language (SEINE-L) for specifying selfishness scenarios, and provides semi-automatic support for their implementation and study in a state-of-the-art simulator. We show in this paper that (1) SEINE-L is expressive enough to specify fifteen selfishness scenarios taken from the literature, (2) SEINE is accurate in predicting the impact of selfishness compared to real experiments, and (3) SEINE substantially reduces the development effort compared to traditional manual approaches.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Selfishness is one of the key problems that confronts developers of cooperative distributed systems (e.g., file-sharing networks, voluntary computing). It has the potential to severely degrade system performance and to lead to instability and failures. Current techniques for understanding the impact of selfish behaviours and designing effective countermeasures remain manual and time-consuming, requiring multi-domain expertise. To overcome these difficulties, we propose SEINE, a simulation framework for rapid modelling and evaluation of selfish behaviours in a cooperative system. SEINE relies on a domain-specific language (SEINE-L) for specifying selfishness scenarios, and provides semi-automatic support for their implementation and study in a state-of-the-art simulator. We show in this paper that (1) SEINE-L is expressive enough to specify fifteen selfishness scenarios taken from the literature, (2) SEINE is accurate in predicting the impact of selfishness compared to real experiments, and (3) SEINE substantially reduces the development effort compared to traditional manual approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用塞纳河分析自私泛滥
自私是协作式分布式系统(例如,文件共享网络,自愿计算)的开发者所面临的关键问题之一。它有可能严重降低系统性能,导致不稳定和故障。目前用于理解自私行为的影响和设计有效对策的技术仍然是手工和耗时的,需要多领域的专业知识。为了克服这些困难,我们提出了SEINE,一个用于快速建模和评估合作系统中自私行为的仿真框架。SEINE依赖于特定于领域的语言(SEINE- l)来指定自私场景,并在最先进的模拟器中为其实现和研究提供半自动支持。我们在本文中表明:(1)SEINE- l具有足够的表现力,可以指定从文献中提取的15种自私场景;(2)与真实实验相比,SEINE在预测自私的影响方面是准确的;(3)与传统的人工方法相比,SEINE大大减少了开发工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromising Security of Economic Dispatch in Power System Operations Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning Towards Automated Discovery of Crash-Resistant Primitives in Binary Executables Sensor-Based Implicit Authentication of Smartphone Users Athena: A Framework for Scalable Anomaly Detection in Software-Defined Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1