Center-of-Gravity Reduce Task Scheduling to Lower MapReduce Network Traffic

Mohammad Hammoud, M. S. Rehman, M. Sakr
{"title":"Center-of-Gravity Reduce Task Scheduling to Lower MapReduce Network Traffic","authors":"Mohammad Hammoud, M. S. Rehman, M. Sakr","doi":"10.1109/CLOUD.2012.92","DOIUrl":null,"url":null,"abstract":"MapReduce is by far one of the most successful realizations of large-scale data-intensive cloud computing platforms. MapReduce automatically parallelizes computation by running multiple map and/or reduce tasks over distributed data across multiple machines. Hadoop is an open source implementation of MapReduce. When Hadoop schedules reduce tasks, it neither exploits data locality nor addresses partitioning skew present in some MapReduce applications. This might lead to increased cluster network traffic. In this paper we investigate the problems of data locality and partitioning skew in Hadoop. We propose Center-of-Gravity Reduce Scheduler (CoGRS), a locality-aware skew-aware reduce task scheduler for saving MapReduce network traffic. In an attempt to exploit data locality, CoGRS schedules each reduce task at its center-of-gravity node, which is computed after considering partitioning skew as well. We implemented CoGRS in Hadoop-0.20.2 and tested it on a private cloud as well as on Amazon EC2. As compared to native Hadoop, our results show that CoGRS minimizes off-rack network traffic by averages of 9.6% and 38.6% on our private cloud and on an Amazon EC2 cluster, respectively. This reflects on job execution times and provides an improvement of up to 23.8%.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

MapReduce is by far one of the most successful realizations of large-scale data-intensive cloud computing platforms. MapReduce automatically parallelizes computation by running multiple map and/or reduce tasks over distributed data across multiple machines. Hadoop is an open source implementation of MapReduce. When Hadoop schedules reduce tasks, it neither exploits data locality nor addresses partitioning skew present in some MapReduce applications. This might lead to increased cluster network traffic. In this paper we investigate the problems of data locality and partitioning skew in Hadoop. We propose Center-of-Gravity Reduce Scheduler (CoGRS), a locality-aware skew-aware reduce task scheduler for saving MapReduce network traffic. In an attempt to exploit data locality, CoGRS schedules each reduce task at its center-of-gravity node, which is computed after considering partitioning skew as well. We implemented CoGRS in Hadoop-0.20.2 and tested it on a private cloud as well as on Amazon EC2. As compared to native Hadoop, our results show that CoGRS minimizes off-rack network traffic by averages of 9.6% and 38.6% on our private cloud and on an Amazon EC2 cluster, respectively. This reflects on job execution times and provides an improvement of up to 23.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重心减少任务调度,降低MapReduce网络流量
MapReduce是迄今为止最成功的大规模数据密集型云计算平台之一。MapReduce通过在多台机器上运行多个map和/或reduce任务来自动并行计算。Hadoop是MapReduce的开源实现。当Hadoop调度reduce任务时,它既不利用数据局部性,也不解决一些MapReduce应用程序中存在的分区倾斜问题。这可能导致集群网络流量增加。本文研究了Hadoop中的数据局部性和分区倾斜问题。我们提出了重心减少调度程序(CoGRS),这是一个位置感知倾斜感知的减少任务调度程序,用于节省MapReduce网络流量。为了利用数据局部性,CoGRS将每个reduce任务安排在其重心节点上,并在考虑分区倾斜后进行计算。我们在Hadoop-0.20.2中实现了CoGRS,并在私有云和Amazon EC2上进行了测试。与原生Hadoop相比,我们的结果表明,在我们的私有云和Amazon EC2集群上,CoGRS将机架外网络流量平均分别减少了9.6%和38.6%。这反映了作业执行时间,并提供了高达23.8%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Resource Scaling Based on Application Service Requirements Optimizing JMS Performance for Cloud-Based Application Servers Sharing-Aware Cloud-Based Mobile Outsourcing QoS-Driven Service Selection for Multi-tenant SaaS Maitland: Lighter-Weight VM Introspection to Support Cyber-security in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1