{"title":"Unsupervised Similarity Based Convolutions for Handwritten Digit Classification","authors":"Tuğba Erkoç, M. T. Eskil","doi":"10.1109/SIU55565.2022.9864689","DOIUrl":null,"url":null,"abstract":"Effective training of filters in Convolutional Neural Networks (CNN) ensures their success. In order to achieve good classification results in CNNs, filters must be carefully initialized, trained and fine-tuned. We propose an unsupervised method that allows the discovery of filters from the given dataset in a single epoch without specifying the number of filters hyper-parameter in convolutional layers. Our proposed method gradually builds the convolutional layers by a discovery routine that extracts a number of features that adequately represent the complexity of the input domain. The discovered filters represent the patterns in the domain, so they do not require any initialization method or backpropagation training for fine tuning purposes. Our method achieves 99.03% accuracy on MNIST dataset without applying any data augmentation techniques.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Effective training of filters in Convolutional Neural Networks (CNN) ensures their success. In order to achieve good classification results in CNNs, filters must be carefully initialized, trained and fine-tuned. We propose an unsupervised method that allows the discovery of filters from the given dataset in a single epoch without specifying the number of filters hyper-parameter in convolutional layers. Our proposed method gradually builds the convolutional layers by a discovery routine that extracts a number of features that adequately represent the complexity of the input domain. The discovered filters represent the patterns in the domain, so they do not require any initialization method or backpropagation training for fine tuning purposes. Our method achieves 99.03% accuracy on MNIST dataset without applying any data augmentation techniques.