Unsupervised Similarity Based Convolutions for Handwritten Digit Classification

Tuğba Erkoç, M. T. Eskil
{"title":"Unsupervised Similarity Based Convolutions for Handwritten Digit Classification","authors":"Tuğba Erkoç, M. T. Eskil","doi":"10.1109/SIU55565.2022.9864689","DOIUrl":null,"url":null,"abstract":"Effective training of filters in Convolutional Neural Networks (CNN) ensures their success. In order to achieve good classification results in CNNs, filters must be carefully initialized, trained and fine-tuned. We propose an unsupervised method that allows the discovery of filters from the given dataset in a single epoch without specifying the number of filters hyper-parameter in convolutional layers. Our proposed method gradually builds the convolutional layers by a discovery routine that extracts a number of features that adequately represent the complexity of the input domain. The discovered filters represent the patterns in the domain, so they do not require any initialization method or backpropagation training for fine tuning purposes. Our method achieves 99.03% accuracy on MNIST dataset without applying any data augmentation techniques.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Effective training of filters in Convolutional Neural Networks (CNN) ensures their success. In order to achieve good classification results in CNNs, filters must be carefully initialized, trained and fine-tuned. We propose an unsupervised method that allows the discovery of filters from the given dataset in a single epoch without specifying the number of filters hyper-parameter in convolutional layers. Our proposed method gradually builds the convolutional layers by a discovery routine that extracts a number of features that adequately represent the complexity of the input domain. The discovered filters represent the patterns in the domain, so they do not require any initialization method or backpropagation training for fine tuning purposes. Our method achieves 99.03% accuracy on MNIST dataset without applying any data augmentation techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无监督相似度卷积的手写数字分类
卷积神经网络(CNN)中滤波器的有效训练保证了其成功。为了在cnn中获得好的分类结果,必须仔细地初始化、训练和微调过滤器。我们提出了一种无监督的方法,允许在单个历元中从给定的数据集中发现过滤器,而无需指定卷积层中过滤器超参数的数量。我们提出的方法通过一个发现例程逐步构建卷积层,该例程提取了许多足以表示输入域复杂性的特征。发现的过滤器表示领域中的模式,因此它们不需要任何初始化方法或用于微调目的的反向传播训练。该方法在不使用任何数据增强技术的情况下,在MNIST数据集上达到99.03%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1