Geometry characterization of electroadhesion samples for spacecraft docking application

M. Ritter, D. Barnhart
{"title":"Geometry characterization of electroadhesion samples for spacecraft docking application","authors":"M. Ritter, D. Barnhart","doi":"10.1109/AERO.2017.7943683","DOIUrl":null,"url":null,"abstract":"Applications of electroadhesion include automation and inspection robots, consumer gripper devices, anchoring tools used in the military and biomedical industry, and more recently, mechanisms for spacecraft docking. The purpose of this study is to characterize geometries of electroadhesion samples for application in spacecraft docking and propose a metric to predict the interaction between geometry and captured object. Shear forces of electroadhesion samples composed of Kapton(R)Polyimide insulating material with embedded aluminum foil electrodes and three common space-rated substrate materials were measured. Responses of the electroadhesion samples configured in three geometries were identified using substrates attached to dynamic two-dimensional air bearing platforms. Geometries included a flat plate design as a prototype for cubesats, a concave, cylindrical design for potential application to circular, cylindrical spacecraft capture and torque mitigation, and a soft four-arm claw design as a prototype for docking to variable shaped objects with full coverage of object surface area. Quantitative and qualitative results were analyzed to characterize the optimal geometry for spacecraft docking. Surface area of each geometry, defined as the area of contact between electroadhesion samples implemented on the geometry and the substrate rigidly attached on air bearing platform, was compared to the stop time, defined as the time required for the geometry to mitigate both initial and residual motion of the air bearing platform. In summary, aluminized mylar substrate is identified as a superior type to achieve the highest attainable shear adhesion forces, and one electroadhesion geometry may be superior to others depending on specific docking scenarios in a space environment in agreement with the proposed metric.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Applications of electroadhesion include automation and inspection robots, consumer gripper devices, anchoring tools used in the military and biomedical industry, and more recently, mechanisms for spacecraft docking. The purpose of this study is to characterize geometries of electroadhesion samples for application in spacecraft docking and propose a metric to predict the interaction between geometry and captured object. Shear forces of electroadhesion samples composed of Kapton(R)Polyimide insulating material with embedded aluminum foil electrodes and three common space-rated substrate materials were measured. Responses of the electroadhesion samples configured in three geometries were identified using substrates attached to dynamic two-dimensional air bearing platforms. Geometries included a flat plate design as a prototype for cubesats, a concave, cylindrical design for potential application to circular, cylindrical spacecraft capture and torque mitigation, and a soft four-arm claw design as a prototype for docking to variable shaped objects with full coverage of object surface area. Quantitative and qualitative results were analyzed to characterize the optimal geometry for spacecraft docking. Surface area of each geometry, defined as the area of contact between electroadhesion samples implemented on the geometry and the substrate rigidly attached on air bearing platform, was compared to the stop time, defined as the time required for the geometry to mitigate both initial and residual motion of the air bearing platform. In summary, aluminized mylar substrate is identified as a superior type to achieve the highest attainable shear adhesion forces, and one electroadhesion geometry may be superior to others depending on specific docking scenarios in a space environment in agreement with the proposed metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航天器对接用电粘附样品的几何特性
电粘附的应用包括自动化和检测机器人、消费者抓取装置、军事和生物医学工业中使用的锚定工具,以及最近用于航天器对接的机制。本研究的目的是表征用于航天器对接的电粘附样品的几何形状,并提出一个度量来预测几何形状与捕获物体之间的相互作用。测量了卡普顿(R)聚酰亚胺绝缘材料嵌套铝箔电极和三种常用空间级衬底材料组成的电粘附试样的剪切力。通过将衬底附着在动态二维空气轴承平台上,确定了三种几何形状的电粘附样品的响应。几何设计包括平板设计,可作为立方体卫星的原型;凹圆柱设计,可用于圆形、圆柱形航天器捕获和减轻扭矩;软四臂爪设计,可作为与可完全覆盖物体表面积的可变形状物体对接的原型。对定量和定性结果进行了分析,以确定航天器对接的最佳几何形状。将每个几何形状的表面积(定义为几何形状上的电粘附样品与刚性附着在空气轴承平台上的基板之间的接触面积)与停止时间(定义为几何形状减轻空气轴承平台的初始和残余运动所需的时间)进行比较。综上所述,镀铝聚酯薄膜衬底被认为是一种获得最高剪切附着力的优越类型,一种电粘附几何形状可能优于其他几何形状,这取决于与拟议度量一致的空间环境中的特定对接场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1