{"title":"Evaluation of Flexural Strength of High-Strength Lightweight Cement Composites containing Carbon Nanotubes","authors":"Sehee Hong, Ohseong Lee, Ho-Jin Lee, Y. Yoon","doi":"10.9798/kosham.2023.23.4.1","DOIUrl":null,"url":null,"abstract":"Lightweight structures have garnered the attention of many researchers for their cost effectiveness and overall design reduction. Cement composites can secure their lightness by incorporating lightweight materials. However, lightweight material has low resistance to external forces. To overcome this disadvantage and achieve high-strength lightweight cement composites (HSLCC), incorporation of 0.05 wt.% carbon nanotubes was considered. In this study, we evaluate the flexural performance of reinforced HSLCC beams with carbon nanotubes considering three tensile reinforcement ratios and two shear span to depth ratios. As the flexural reinforcement ratio increased, the ductility of the specimens decreased. However, specimens 0.8-3.6, 1.3-3.6, and 1.9-3.6 satisfied the minimum ductility index and secured shear performance. The domestic design standards evaluated the flexural strength conservatively for reinforced HSLCC with carbon nanotubes.","PeriodicalId":416980,"journal":{"name":"Journal of the Korean Society of Hazard Mitigation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Hazard Mitigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9798/kosham.2023.23.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lightweight structures have garnered the attention of many researchers for their cost effectiveness and overall design reduction. Cement composites can secure their lightness by incorporating lightweight materials. However, lightweight material has low resistance to external forces. To overcome this disadvantage and achieve high-strength lightweight cement composites (HSLCC), incorporation of 0.05 wt.% carbon nanotubes was considered. In this study, we evaluate the flexural performance of reinforced HSLCC beams with carbon nanotubes considering three tensile reinforcement ratios and two shear span to depth ratios. As the flexural reinforcement ratio increased, the ductility of the specimens decreased. However, specimens 0.8-3.6, 1.3-3.6, and 1.9-3.6 satisfied the minimum ductility index and secured shear performance. The domestic design standards evaluated the flexural strength conservatively for reinforced HSLCC with carbon nanotubes.