Recursive 3D scene estimation with multiple camera pairs

Torsten Engler, Hans-Joachim Wünsche
{"title":"Recursive 3D scene estimation with multiple camera pairs","authors":"Torsten Engler, Hans-Joachim Wünsche","doi":"10.1109/IPTA.2017.8310129","DOIUrl":null,"url":null,"abstract":"In this paper we present the recursive estimation of static scenes with multiple stereo camera pairs. The estimation is based on a point cloud created from the disparities of the cameras. The focus lies on reducing erroneous measurements while obtaining a comparatively dense measurement in real time. While recursive scene estimation via stereo cameras has been presented several times before, the estimation has never been exploited in the measurement algorithm. We propose the usage of the current scene estimation in the disparity measurement to increase robustness, denseness and outlier rejection. A scene prior is created for each measurement using OpenGL taking occlusions, camera positions and existence probability into account. Additionally, multiple stereo pairs with different alignment provide distinct information. Each disparity measurement benefits from the complete scene knowledge the other stereo camera pairs provide. The creation of new points for the point cloud is based on a scaled version of the current scene and allows for simple trade-off between computational effort and point cloud denseness.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present the recursive estimation of static scenes with multiple stereo camera pairs. The estimation is based on a point cloud created from the disparities of the cameras. The focus lies on reducing erroneous measurements while obtaining a comparatively dense measurement in real time. While recursive scene estimation via stereo cameras has been presented several times before, the estimation has never been exploited in the measurement algorithm. We propose the usage of the current scene estimation in the disparity measurement to increase robustness, denseness and outlier rejection. A scene prior is created for each measurement using OpenGL taking occlusions, camera positions and existence probability into account. Additionally, multiple stereo pairs with different alignment provide distinct information. Each disparity measurement benefits from the complete scene knowledge the other stereo camera pairs provide. The creation of new points for the point cloud is based on a scaled version of the current scene and allows for simple trade-off between computational effort and point cloud denseness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多相机对的三维场景递归估计
本文提出了多对立体相机静态场景的递归估计方法。估计是基于由相机的差异产生的点云。重点在于减少错误的测量,同时获得相对密集的实时测量。虽然以前已经多次提出了基于立体摄像机的递归场景估计,但该估计从未在测量算法中得到利用。我们建议在视差测量中使用当前场景估计来增加鲁棒性、密度和异常值抑制。使用OpenGL为每个测量创建一个场景先验,将遮挡、相机位置和存在概率考虑在内。此外,具有不同排列方式的多个立体对提供不同的信息。每个视差测量受益于完整的场景知识,其他立体相机对提供。点云的新点的创建基于当前场景的缩放版本,并且允许在计算工作量和点云密度之间进行简单的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1