Jonathan Lejeune, L. Arantes, Julien Sopena, Pierre Sens
{"title":"Reducing Synchronization Cost in Distributed Multi-resource Allocation Problem","authors":"Jonathan Lejeune, L. Arantes, Julien Sopena, Pierre Sens","doi":"10.1109/ICPP.2015.63","DOIUrl":null,"url":null,"abstract":"Generalized distributed mutual exclusion algorithms allow processes to concurrently access a set of shared resources. However, they must ensure an exclusive access to each resource. In order to avoid deadlocks, many of them are based on the strong assumption of a prior knowledge about conflicts between processes' requests. Some other approaches, which do not require such a knowledge, exploit broadcast mechanisms or a global lock, degrading message complexity and synchronization cost. We propose in this paper a new solution for shared resources allocation which reduces the communication between non-conflicting processes without a prior knowledge of processes conflicts. Performance evaluation results show that our solution improves resource use rate by a factor up to 20 compared to a global lock based algorithm.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Generalized distributed mutual exclusion algorithms allow processes to concurrently access a set of shared resources. However, they must ensure an exclusive access to each resource. In order to avoid deadlocks, many of them are based on the strong assumption of a prior knowledge about conflicts between processes' requests. Some other approaches, which do not require such a knowledge, exploit broadcast mechanisms or a global lock, degrading message complexity and synchronization cost. We propose in this paper a new solution for shared resources allocation which reduces the communication between non-conflicting processes without a prior knowledge of processes conflicts. Performance evaluation results show that our solution improves resource use rate by a factor up to 20 compared to a global lock based algorithm.