EEG-Based Biometrics Utilizing Image Recognition for Patient Identification

Hyung-jin Do, Vu Truong, K. George, Bhagyashree Shirke
{"title":"EEG-Based Biometrics Utilizing Image Recognition for Patient Identification","authors":"Hyung-jin Do, Vu Truong, K. George, Bhagyashree Shirke","doi":"10.1109/UEMCON47517.2019.8992962","DOIUrl":null,"url":null,"abstract":"Biometric identification has been applied widely for security purpose in many different fields by using fingerprints, face detection, or voice waves. In medical fields, using patient wristband or patient card for identification may cause the medical records to be mistaken. To overcome these limitations, in this paper, a new method is presented by using electroencephalogram (EEG) signals to classify the patient's identity, hence preventing treating the wrong patient. The system utilizes various hardware and software such as OpenBCI Cyton, EEGlab, MATLAB, and bandpass filter. The main purpose of this research is highlighting the recognition of each EEG signal pattern from each person by capturing the signals from watching a series of images that trigger attentions and memories.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8992962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Biometric identification has been applied widely for security purpose in many different fields by using fingerprints, face detection, or voice waves. In medical fields, using patient wristband or patient card for identification may cause the medical records to be mistaken. To overcome these limitations, in this paper, a new method is presented by using electroencephalogram (EEG) signals to classify the patient's identity, hence preventing treating the wrong patient. The system utilizes various hardware and software such as OpenBCI Cyton, EEGlab, MATLAB, and bandpass filter. The main purpose of this research is highlighting the recognition of each EEG signal pattern from each person by capturing the signals from watching a series of images that trigger attentions and memories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的生物识别技术利用图像识别进行患者身份识别
生物识别技术通过指纹、人脸识别或语音识别等手段,在安全领域得到了广泛的应用。在医疗领域,使用患者手环或患者卡进行识别可能会导致病历的错误。为了克服这些局限性,本文提出了一种利用脑电图(EEG)信号对患者身份进行分类的新方法,从而防止治疗错误的患者。该系统采用了OpenBCI Cyton、EEGlab、MATLAB、带通滤波器等多种硬件和软件。这项研究的主要目的是通过捕捉观看一系列引发注意力和记忆的图像的信号来强调对每个人的每个脑电图信号模式的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1