{"title":"Debiased Subjective Assessment of Real-World Image Enhancement","authors":"Peibei Cao, Zhangyang Wang, Kede Ma","doi":"10.1109/CVPR46437.2021.00077","DOIUrl":null,"url":null,"abstract":"In real-world image enhancement, it is often challenging (if not impossible) to acquire ground-truth data, preventing the adoption of distance metrics for objective quality assessment. As a result, one often resorts to subjective quality assessment, the most straightforward and reliable means of evaluating image enhancement. Conventional subjective testing requires manually pre-selecting a small set of visual examples, which may suffer from three sources of biases: 1) sampling bias due to the extremely sparse distribution of the selected samples in the image space; 2) algorithmic bias due to potential overfitting the selected samples; 3) subjective bias due to further potential cherry-picking test results. This eventually makes the field of real-world image enhancement more of an art than a science. Here we take steps towards debiasing conventional subjective assessment by automatically sampling a set of adaptive and diverse images for subsequent testing. This is achieved by casting sample selection into a joint maximization of the discrepancy between the enhancers and the diversity among the selected input images. Careful visual inspection on the resulting enhanced images provides a debiased ranking of the enhancement algorithms. We demonstrate our subjective assessment method using three popular and practically demanding image enhancement tasks: dehazing, super-resolution, and low-light enhancement.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In real-world image enhancement, it is often challenging (if not impossible) to acquire ground-truth data, preventing the adoption of distance metrics for objective quality assessment. As a result, one often resorts to subjective quality assessment, the most straightforward and reliable means of evaluating image enhancement. Conventional subjective testing requires manually pre-selecting a small set of visual examples, which may suffer from three sources of biases: 1) sampling bias due to the extremely sparse distribution of the selected samples in the image space; 2) algorithmic bias due to potential overfitting the selected samples; 3) subjective bias due to further potential cherry-picking test results. This eventually makes the field of real-world image enhancement more of an art than a science. Here we take steps towards debiasing conventional subjective assessment by automatically sampling a set of adaptive and diverse images for subsequent testing. This is achieved by casting sample selection into a joint maximization of the discrepancy between the enhancers and the diversity among the selected input images. Careful visual inspection on the resulting enhanced images provides a debiased ranking of the enhancement algorithms. We demonstrate our subjective assessment method using three popular and practically demanding image enhancement tasks: dehazing, super-resolution, and low-light enhancement.