Qi Liu, M. Hernández‐Pajares, Heng Yang, E. Monte‐Moreno, D. Roma-Dollase, A. García‐Rigo, Zishen Li, Ningbo Wang, D. Laurichesse, A. Blot, Qile Zhao, Qiang Zhang, A. Hauschild, L. Agrotis, M. Schmitz, G. Wübbena, A. Stürze, A. Krankowski, S. Schaer, J. Feltens, A. Komjathy, R. Ghoddousi-Fard
{"title":"The cooperative IGS RT-GIMs: a global and accurate estimation of the ionospheric electron content distribution in real-time","authors":"Qi Liu, M. Hernández‐Pajares, Heng Yang, E. Monte‐Moreno, D. Roma-Dollase, A. García‐Rigo, Zishen Li, Ningbo Wang, D. Laurichesse, A. Blot, Qile Zhao, Qiang Zhang, A. Hauschild, L. Agrotis, M. Schmitz, G. Wübbena, A. Stürze, A. Krankowski, S. Schaer, J. Feltens, A. Komjathy, R. Ghoddousi-Fard","doi":"10.5194/ESSD-2021-136","DOIUrl":null,"url":null,"abstract":"Abstract. The Real-Time Working Group (RTWG) of the International GNSS Service (IGS) is dedicated to providing high-quality data, high-accuracy products for Global Navigation Satellite System (GNSS) positioning, navigation, timing, and Earth observations. As one part of real-time products, the IGS combined Real-Time Global Ionosphere Map (RT-GIM) has been generated by the real-time weighting of the RT-GIMs from IGS real-time ionosphere centers including the Chinese Academy of Sciences (CAS), Centre National d’Etudes Spatiales (CNES), Universitat Politècnica de Catalunya (UPC), and Wuhan University (WHU). The performance of global Vertical Total Electron Content (VTEC) representation in all of the RT-GIMs has been assessed by VTEC from Jason3-altimeter during one month over oceans and dSTEC-GPS technique with 2-day observations over continental regions. According to the Jason3-VTEC and dSTEC-GPS assessment, the real-time weighting technique is sensitive to the accuracy of RT-GIMs. Compared with the performance of post-processed rapid Global Ionosphere Maps (GIMs) and IGS combined final GIM (igsg) during the testing period, the accuracy of UPC RT-GIM (after the transition of interpolation technique) and IGS combined RT-GIM (IRTG) is equivalent to the rapid GIMs and reaches around 2.7 and 3.0 TECU (TEC Unit, 1016 el/m2) over oceans and continental regions, respectively. The accuracy of CAS RT-GIM and CNES RT-GIM is slightly worse than the rapid GIMs, while WHU RT-GIM requires a further upgrade to obtain similar performance. In addition, the strong response to the recent geomagnetic storms has been found in the Global Electron Content (GEC) of IGS RT-GIMs (especially UPC RT-GIM and IGS combined RT-GIM). The IGS RT-GIMs turn out to be reliable sources of real-time global VTEC information and have great potential for real-time applications including range error correction for transionospheric radio signals (such as GNSS positioning, search and rescue, air traffic, radar altimetry, and radioastronomy), the monitoring of space weather (such as geomagnetic and ionospheric storms, ionospheric disturbance) and detection of natural hazards on a global scale (such as hurricanes/typhoons, ionospheric anomalies associated with earthquakes). All the IGS combined RT-GIMs generated and analyzed during the testing period are available at http://doi.org/10.5281/zenodo.4651445 (Liu et al., 2021b).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2021-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. The Real-Time Working Group (RTWG) of the International GNSS Service (IGS) is dedicated to providing high-quality data, high-accuracy products for Global Navigation Satellite System (GNSS) positioning, navigation, timing, and Earth observations. As one part of real-time products, the IGS combined Real-Time Global Ionosphere Map (RT-GIM) has been generated by the real-time weighting of the RT-GIMs from IGS real-time ionosphere centers including the Chinese Academy of Sciences (CAS), Centre National d’Etudes Spatiales (CNES), Universitat Politècnica de Catalunya (UPC), and Wuhan University (WHU). The performance of global Vertical Total Electron Content (VTEC) representation in all of the RT-GIMs has been assessed by VTEC from Jason3-altimeter during one month over oceans and dSTEC-GPS technique with 2-day observations over continental regions. According to the Jason3-VTEC and dSTEC-GPS assessment, the real-time weighting technique is sensitive to the accuracy of RT-GIMs. Compared with the performance of post-processed rapid Global Ionosphere Maps (GIMs) and IGS combined final GIM (igsg) during the testing period, the accuracy of UPC RT-GIM (after the transition of interpolation technique) and IGS combined RT-GIM (IRTG) is equivalent to the rapid GIMs and reaches around 2.7 and 3.0 TECU (TEC Unit, 1016 el/m2) over oceans and continental regions, respectively. The accuracy of CAS RT-GIM and CNES RT-GIM is slightly worse than the rapid GIMs, while WHU RT-GIM requires a further upgrade to obtain similar performance. In addition, the strong response to the recent geomagnetic storms has been found in the Global Electron Content (GEC) of IGS RT-GIMs (especially UPC RT-GIM and IGS combined RT-GIM). The IGS RT-GIMs turn out to be reliable sources of real-time global VTEC information and have great potential for real-time applications including range error correction for transionospheric radio signals (such as GNSS positioning, search and rescue, air traffic, radar altimetry, and radioastronomy), the monitoring of space weather (such as geomagnetic and ionospheric storms, ionospheric disturbance) and detection of natural hazards on a global scale (such as hurricanes/typhoons, ionospheric anomalies associated with earthquakes). All the IGS combined RT-GIMs generated and analyzed during the testing period are available at http://doi.org/10.5281/zenodo.4651445 (Liu et al., 2021b).