Function Approximation Approach to the Inference of Neural Network Models of Genetic Networks

Shuhei Kimura, Katsuki Sonoda, S. Yamane, Koki Matsumura, M. Hatakeyama
{"title":"Function Approximation Approach to the Inference of Neural Network Models of Genetic Networks","authors":"Shuhei Kimura, Katsuki Sonoda, S. Yamane, Koki Matsumura, M. Hatakeyama","doi":"10.2197/IPSJDC.3.153","DOIUrl":null,"url":null,"abstract":"A model based on a set of differential equations can effectively capture various dynamics. This type of model is therefore ideal for describing genetic networks. Several genetic network inference algorithms based on models of this type have been proposed. Most of these inference methods use models based on a set of differential equations of the fixed form to describe genetic networks. In this study, we propose a new method for the inference of genetic networks. To describe genetic networks, the proposed method does not use models of the fixed form, but uses neural network models. In order to interpret obtained neural network models, we also propose a method based on sensitivity analysis. The effectiveness of the proposed methods is verified through a series of artificial genetic network inference problems.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A model based on a set of differential equations can effectively capture various dynamics. This type of model is therefore ideal for describing genetic networks. Several genetic network inference algorithms based on models of this type have been proposed. Most of these inference methods use models based on a set of differential equations of the fixed form to describe genetic networks. In this study, we propose a new method for the inference of genetic networks. To describe genetic networks, the proposed method does not use models of the fixed form, but uses neural network models. In order to interpret obtained neural network models, we also propose a method based on sensitivity analysis. The effectiveness of the proposed methods is verified through a series of artificial genetic network inference problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传网络神经网络模型推理的函数逼近方法
基于一组微分方程的模型可以有效地捕捉各种动态。因此,这种类型的模型是描述遗传网络的理想模型。已经提出了几种基于这类模型的遗传网络推理算法。这些推理方法大多使用基于一组固定形式的微分方程的模型来描述遗传网络。在这项研究中,我们提出了一种新的遗传网络推断方法。为了描述遗传网络,该方法不使用固定形式的模型,而是使用神经网络模型。为了解释得到的神经网络模型,我们还提出了一种基于灵敏度分析的方法。通过一系列人工遗传网络推理问题验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1