Crim's French speech transcription system for ETAPE 2011

Vishwa Gupta, Gilles Boulianne, Frédéric Osterrath, P. Ouellet
{"title":"Crim's French speech transcription system for ETAPE 2011","authors":"Vishwa Gupta, Gilles Boulianne, Frédéric Osterrath, P. Ouellet","doi":"10.1109/WOSSPA.2013.6602390","DOIUrl":null,"url":null,"abstract":"This paper describes the French broadcast speech transcription system by CRIM for the ETAPE 2011 evaluation. The key elements in this recognizer include over 140,000-word dictionary, 478 hours of audio for training the acoustic models, feature-space MMI and boosted MMI discriminative training of the acoustic models, variable-frame-rate decoding with trigram language model, lattice rescoring with quadgram language model, soft penalty on silence models, confusion network decoding with minimum Bayes risk, and combining multiple recognizers with ROVER. Recognition enhancements after the ETAPE evaluation include discriminative training of the subspace Gaussian mixture models and lattice rescoring with neural net language models.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes the French broadcast speech transcription system by CRIM for the ETAPE 2011 evaluation. The key elements in this recognizer include over 140,000-word dictionary, 478 hours of audio for training the acoustic models, feature-space MMI and boosted MMI discriminative training of the acoustic models, variable-frame-rate decoding with trigram language model, lattice rescoring with quadgram language model, soft penalty on silence models, confusion network decoding with minimum Bayes risk, and combining multiple recognizers with ROVER. Recognition enhancements after the ETAPE evaluation include discriminative training of the subspace Gaussian mixture models and lattice rescoring with neural net language models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crim的法语语音转录系统为ETAPE 2011
本文介绍了基于CRIM的法语广播语音转录系统,用于ETAPE 2011评估。该识别器的关键要素包括超过14万字的字典、用于声学模型训练的478小时音频、声学模型的特征空间MMI和增强MMI判别训练、三格语言模型的变帧率解码、四格语言模型的点阵评分、沉默模型的软惩罚、最小贝叶斯风险的混淆网络解码以及多识别器与ROVER的结合。ETAPE评估后的识别增强包括子空间高斯混合模型的判别训练和神经网络语言模型的格点评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor estimation and visualization using dMRI Effect of multi-users and multipaths on the performance of an adaptive serial acquisition scheme for DS/CDMA systems Relay self interference minimisation using tapped filter New procedure in designing 2D-IIR filters based on 2D-FIR filters approximation Empirical mode decomposition based support vector machines for microemboli classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1