Relations Expansion: Extracting Relationship Instances from the Web

Haibo Li, Y. Matsuo, M. Ishizuka
{"title":"Relations Expansion: Extracting Relationship Instances from the Web","authors":"Haibo Li, Y. Matsuo, M. Ishizuka","doi":"10.1109/WI-IAT.2010.269","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Relation Expansion framework, which uses a few seed sentences marked up with two entities to expand a set of sentences containing target relations. During the expansion process, label propagation algorithm is used to select the most confident entity pairs and context patterns. The label propagation algorithm is a graph based semi-supervised learning method which models the entire data set as a weighted graph and the label score is propagated on this graph. We test the proposed framework with four relationships, the results show that the label propagation is quite competitive comparing with existing methods.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Relation Expansion framework, which uses a few seed sentences marked up with two entities to expand a set of sentences containing target relations. During the expansion process, label propagation algorithm is used to select the most confident entity pairs and context patterns. The label propagation algorithm is a graph based semi-supervised learning method which models the entire data set as a weighted graph and the label score is propagated on this graph. We test the proposed framework with four relationships, the results show that the label propagation is quite competitive comparing with existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系扩展:从Web中提取关系实例
在本文中,我们提出了一个关系扩展框架,该框架使用几个由两个实体标记的种子句来扩展包含目标关系的一组句子。在扩展过程中,使用标签传播算法选择最可信的实体对和上下文模式。标签传播算法是一种基于图的半监督学习方法,它将整个数据集建模为一个加权图,并在这个图上传播标签分数。我们用四种关系对所提出的框架进行了测试,结果表明,与现有的标签传播方法相比,该框架具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1