On-line handwritten signature verification using hidden Markov model features

R. Kashi, Jianying Hu, W. Nelson, William Turin
{"title":"On-line handwritten signature verification using hidden Markov model features","authors":"R. Kashi, Jianying Hu, W. Nelson, William Turin","doi":"10.1109/ICDAR.1997.619851","DOIUrl":null,"url":null,"abstract":"A method for the automatic verification of on-line handwritten signatures using both global and local features as described. The global and local features capture various aspects of signature shape and dynamics of signature production. The authors demonstrate that with the addition to the global features of a local feature based on the signature likelihood obtained from hidden Markov models (HMM) the performance of signature verification improves significantly. The current version of the program, has 2.5% equal error rate. At the 1% false rejection (FR) point, the addition of the local information to the algorithm with only global features reduced the false acceptance (FA) rate from 13% to 5%.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.619851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A method for the automatic verification of on-line handwritten signatures using both global and local features as described. The global and local features capture various aspects of signature shape and dynamics of signature production. The authors demonstrate that with the addition to the global features of a local feature based on the signature likelihood obtained from hidden Markov models (HMM) the performance of signature verification improves significantly. The current version of the program, has 2.5% equal error rate. At the 1% false rejection (FR) point, the addition of the local information to the algorithm with only global features reduced the false acceptance (FA) rate from 13% to 5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用隐马尔可夫模型特征的在线手写签名验证
一种使用全局和局部特征对在线手写签名进行自动验证的方法。全局和局部特征捕获签名形状和签名生产动态的各个方面。研究表明,在隐马尔可夫模型(HMM)的签名似然值基础上,在局部特征的基础上加入全局特征,可以显著提高签名验证的性能。当前版本的程序错误率为2.5%。在1%的错误拒绝(FR)点,在仅具有全局特征的算法中添加局部信息将错误接受(FA)率从13%降低到5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1