Design optimization of a high performance five-phase slotless PMSM

S. Sadeghi, A. Mohammadpour, L. Parsa
{"title":"Design optimization of a high performance five-phase slotless PMSM","authors":"S. Sadeghi, A. Mohammadpour, L. Parsa","doi":"10.1109/SPEEDAM.2014.6871931","DOIUrl":null,"url":null,"abstract":"Multi-phase slotless permanent magnet synchronous motors (PMSMs) are cogging torque-free motors with fault tolerant capability developed for high speed applications such as aerospace and marine. Slotless PMSMs can offer a higher torque density when they have a trapezoidal back EMF and supplied with nonsinusoidal current. In this paper, a five-phase slotless PMSM with an external rotor is designed for high torque density. For this purpose, the optimal portions of the time and space harmonic components for producing the highest torque in five-phase PMSMs are calculated mathematically. A closed form analytical model for this motor is then introduced. Based on the analytical model, a multi-objective optimization using genetic algorithm (GA) technique is performed to optimize the motor back EMF waveform and achieve the highest torque density. The detailed finite element analyses are executed to validate the analytical results.","PeriodicalId":344918,"journal":{"name":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2014.6871931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Multi-phase slotless permanent magnet synchronous motors (PMSMs) are cogging torque-free motors with fault tolerant capability developed for high speed applications such as aerospace and marine. Slotless PMSMs can offer a higher torque density when they have a trapezoidal back EMF and supplied with nonsinusoidal current. In this paper, a five-phase slotless PMSM with an external rotor is designed for high torque density. For this purpose, the optimal portions of the time and space harmonic components for producing the highest torque in five-phase PMSMs are calculated mathematically. A closed form analytical model for this motor is then introduced. Based on the analytical model, a multi-objective optimization using genetic algorithm (GA) technique is performed to optimize the motor back EMF waveform and achieve the highest torque density. The detailed finite element analyses are executed to validate the analytical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能五相无槽永磁同步电机的设计优化
多相无槽永磁同步电机(PMSMs)是一种具有容错能力的无齿槽转矩电机,主要用于航空航天和船舶等高速应用。当无槽永磁同步电机具有梯形反电动势并提供非正弦电流时,可以提供更高的转矩密度。针对高转矩密度的特点,设计了一种带外转子的五相无槽永磁同步电机。为此,对五相永磁同步电机中产生最大转矩的时间和空间谐波分量的最佳部分进行了数学计算。然后介绍了该电机的封闭形式解析模型。在分析模型的基础上,采用遗传算法进行多目标优化,优化电机反电动势波形,实现最大转矩密度。进行了详细的有限元分析,验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless controlled circuit for PV panel disconnection in case of fire Voltage stabilization in weak grids by high power charging stations Concepts for an integration of quick charging stations in weak power grids Some lab experiments on the control of an aircraft electrical landing gear Controller Hardware-In-the-Loop validation of a magnetic core saturation algorithm for fault ride-through evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1