GRNet: Deep Convolutional Neural Networks based on Graph Reasoning for Semantic Segmentation

Yang Wu, A. Jiang, Yibin Tang, H. Kwan
{"title":"GRNet: Deep Convolutional Neural Networks based on Graph Reasoning for Semantic Segmentation","authors":"Yang Wu, A. Jiang, Yibin Tang, H. Kwan","doi":"10.1109/VCIP49819.2020.9301851","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel deep-network architecture for semantic segmentation. In contrast to previous work that widely uses dilated convolutions, we employ the original ResNet as the backbone, and a multi-scale feature fusion module (MFFM) is introduced to extract long-range contextual information and upsample feature maps. Then, a graph reasoning module (GRM) based on graph-convolutional network (GCN) is developed to aggregate semantic information. Our graph reasoning network (GRNet) extracts global contexts of input features by modeling graph reasoning in a single framework. Experimental results demonstrate that our approach provides substantial benefits over a strong baseline and achieves superior segmentation performance on two benchmark datasets.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we develop a novel deep-network architecture for semantic segmentation. In contrast to previous work that widely uses dilated convolutions, we employ the original ResNet as the backbone, and a multi-scale feature fusion module (MFFM) is introduced to extract long-range contextual information and upsample feature maps. Then, a graph reasoning module (GRM) based on graph-convolutional network (GCN) is developed to aggregate semantic information. Our graph reasoning network (GRNet) extracts global contexts of input features by modeling graph reasoning in a single framework. Experimental results demonstrate that our approach provides substantial benefits over a strong baseline and achieves superior segmentation performance on two benchmark datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GRNet:基于图推理的深度卷积神经网络语义分割
在本文中,我们开发了一种新的用于语义分割的深度网络架构。与以往广泛使用扩张卷积的研究不同,我们采用原始的ResNet作为主干,并引入多尺度特征融合模块(MFFM)来提取远程上下文信息和上样本特征映射。然后,开发了基于图卷积网络(GCN)的图推理模块(GRM)来实现语义信息的聚合。我们的图推理网络(GRNet)通过在单一框架中建模图推理来提取输入特征的全局上下文。实验结果表明,我们的方法在强大的基线上提供了实质性的好处,并在两个基准数据集上实现了卓越的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1