Automatic speech recognition for Bangla digits

G. Muhammad, Y. Alotaibi, M. N. Huda
{"title":"Automatic speech recognition for Bangla digits","authors":"G. Muhammad, Y. Alotaibi, M. N. Huda","doi":"10.1109/ICCIT.2009.5407267","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a system for Bangla digit automatic speech recognition (ASR). Though Bangla is one of the largely spoken languages in the world, only a few works on Bangla ASR can be found in the literature, especially on Bangladeshi accented Bangla. In this work, the corpus is collected from natives in Bangladesh. Mel-frequency cepstral coefficients (MFCCs) based features and hidden Markov model (HMM) based classifiers are used for recognition. Experimental results show comparatively high recognition performance (more than 95%) for first six digits (0 – 5) and low performance (less than 90%) for the next four digits (6 – 9). We notice two confused pairs of digits: one with (6) and (9), and the other with (7) and (8), in the experiments. We also find that different dialects in Bangladesh have a greater role on this confusion.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

In this paper, we introduce a system for Bangla digit automatic speech recognition (ASR). Though Bangla is one of the largely spoken languages in the world, only a few works on Bangla ASR can be found in the literature, especially on Bangladeshi accented Bangla. In this work, the corpus is collected from natives in Bangladesh. Mel-frequency cepstral coefficients (MFCCs) based features and hidden Markov model (HMM) based classifiers are used for recognition. Experimental results show comparatively high recognition performance (more than 95%) for first six digits (0 – 5) and low performance (less than 90%) for the next four digits (6 – 9). We notice two confused pairs of digits: one with (6) and (9), and the other with (7) and (8), in the experiments. We also find that different dialects in Bangladesh have a greater role on this confusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动语音识别孟加拉数字
本文介绍了一种孟加拉语数字自动语音识别系统。虽然孟加拉语是世界上主要使用的语言之一,但在文献中,关于孟加拉语ASR的作品很少,特别是关于孟加拉口音的孟加拉语。在这项工作中,语料库是从孟加拉国当地人收集的。基于mel频率倒谱系数(MFCCs)的特征和基于隐马尔可夫模型(HMM)的分类器进行识别。实验结果表明,对前六位数字(0 - 5)的识别性能相对较高(超过95%),而对后四位数字(6 - 9)的识别性能较低(低于90%)。在实验中,我们注意到两对数字混淆:一对是(6)和(9),另一对是(7)和(8)。我们还发现,孟加拉国的不同方言对这种混淆起着更大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1