{"title":"How Deep Learning Works for Information Retrieval","authors":"D. Tao","doi":"10.1145/3397271.3402429","DOIUrl":null,"url":null,"abstract":"Information retrieval (IR) is the science of search, the search of user query relevant pieces of information from a collection of unstructured resources. Information in this context includes text, imagery, audio, video, xml, program, and metadata. The journey of an IR process begins with a user query sent to the IR system which encodes the query, compares the query with the available resources, and returns the most relevant pieces of information. Thus, the system is equipped with the ability to store, retrieve and maintain information. In the early era of IR, the whole process was completed using handcrafted features and ad-hoc relevance measures. Later, principled frameworks for relevance measure were developed with statistical learning as a basis. Recently, deep learning has proven essential to the introduction of more opportunities to IR. This is because data-driven features combined with data-driven relevance measures can effectively eliminate the human bias in either feature or relevance measure design. Deep learning has shown its significant potential to transform IR evidenced by abundant empirical results. However, we continue to strive to gain a comprehensive understanding of deep learning. This is done by answering questions such as why deep structures are superior to shallow structures, how skip connections affect a model's performance, uncovering the potential relationship between some of the hyper-parameters and a model's performance, and exploring ways to reduce the chance for deep models to be fooled by adversaries. Answering such questions can help design more effective deep models and devise more efficient schemes for model training.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3402429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Information retrieval (IR) is the science of search, the search of user query relevant pieces of information from a collection of unstructured resources. Information in this context includes text, imagery, audio, video, xml, program, and metadata. The journey of an IR process begins with a user query sent to the IR system which encodes the query, compares the query with the available resources, and returns the most relevant pieces of information. Thus, the system is equipped with the ability to store, retrieve and maintain information. In the early era of IR, the whole process was completed using handcrafted features and ad-hoc relevance measures. Later, principled frameworks for relevance measure were developed with statistical learning as a basis. Recently, deep learning has proven essential to the introduction of more opportunities to IR. This is because data-driven features combined with data-driven relevance measures can effectively eliminate the human bias in either feature or relevance measure design. Deep learning has shown its significant potential to transform IR evidenced by abundant empirical results. However, we continue to strive to gain a comprehensive understanding of deep learning. This is done by answering questions such as why deep structures are superior to shallow structures, how skip connections affect a model's performance, uncovering the potential relationship between some of the hyper-parameters and a model's performance, and exploring ways to reduce the chance for deep models to be fooled by adversaries. Answering such questions can help design more effective deep models and devise more efficient schemes for model training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习如何用于信息检索
信息检索(Information retrieval, IR)是一门搜索的科学,是用户从非结构化资源的集合中查询相关的信息。此上下文中的信息包括文本、图像、音频、视频、xml、程序和元数据。IR流程从发送给IR系统的用户查询开始,IR系统对查询进行编码,将查询与可用资源进行比较,并返回最相关的信息片段。因此,该系统具有存储、检索和维护信息的能力。在IR的早期,整个过程是使用手工制作的特征和特别的相关性度量来完成的。后来,以统计学习为基础,开发了相关度量的原则框架。最近,深度学习已被证明对引入更多IR机会至关重要。这是因为数据驱动的特征与数据驱动的相关度量相结合,可以有效地消除在特征或相关度量设计中的人为偏见。大量的实证结果表明,深度学习已经显示出其改变IR的巨大潜力。然而,我们继续努力获得对深度学习的全面理解。这是通过回答以下问题来完成的:为什么深层结构优于浅层结构,跳过连接如何影响模型的性能,揭示一些超参数和模型性能之间的潜在关系,以及探索减少深层模型被对手欺骗的机会的方法。回答这些问题可以帮助设计更有效的深度模型,并设计更有效的模型训练方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1