Music structure based vector space retrieval

N. Maddage, Haizhou Li, M. Kankanhalli
{"title":"Music structure based vector space retrieval","authors":"N. Maddage, Haizhou Li, M. Kankanhalli","doi":"10.1145/1148170.1148185","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel framework for music content indexing and retrieval. The music structure information, i.e., timing, harmony and music region content, is represented by the layers of the music structure pyramid. We begin by extracting this layered structure information. We analyze the rhythm of the music and then segment the signal proportional to the inter-beat intervals. Thus, the timing information is incorporated in the segmentation process, which we call Beat Space Segmentation. To describe Harmony Events, we propose a two-layer hierarchical approach to model the music chords. We also model the progression of instrumental and vocal content as Acoustic Events. After information extraction, we propose a vector space modeling approach which uses these events as the indexing terms. In query-by-example music retrieval, a query is represented by a vector of the statistics of the n-gram events. We then propose two effective retrieval models, a hard-indexing scheme and a soft-indexing scheme. Experiments show that the vector space modeling is effective in representing the layered music information, achieving 82.5% top-5 retrieval accuracy using 15-sec music clips as the queries. The soft-indexing outperforms hard-indexing in general.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper proposes a novel framework for music content indexing and retrieval. The music structure information, i.e., timing, harmony and music region content, is represented by the layers of the music structure pyramid. We begin by extracting this layered structure information. We analyze the rhythm of the music and then segment the signal proportional to the inter-beat intervals. Thus, the timing information is incorporated in the segmentation process, which we call Beat Space Segmentation. To describe Harmony Events, we propose a two-layer hierarchical approach to model the music chords. We also model the progression of instrumental and vocal content as Acoustic Events. After information extraction, we propose a vector space modeling approach which uses these events as the indexing terms. In query-by-example music retrieval, a query is represented by a vector of the statistics of the n-gram events. We then propose two effective retrieval models, a hard-indexing scheme and a soft-indexing scheme. Experiments show that the vector space modeling is effective in representing the layered music information, achieving 82.5% top-5 retrieval accuracy using 15-sec music clips as the queries. The soft-indexing outperforms hard-indexing in general.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于向量空间检索的音乐结构
本文提出了一种新的音乐内容索引和检索框架。音乐结构信息,即节拍、和声和音乐区域内容,用音乐结构金字塔的各层来表示。我们从提取分层结构信息开始。我们分析音乐的节奏,然后按节拍间隔的比例分割信号。因此,在分割过程中加入了时间信息,我们称之为节拍空间分割。为了描述和谐事件,我们提出了一种双层分层方法来建模音乐和弦。我们还将器乐和声乐内容的进展建模为声学事件。在信息提取之后,我们提出了一种使用这些事件作为索引项的向量空间建模方法。在按例查询音乐检索中,查询由n-gram事件的统计向量表示。然后,我们提出了两种有效的检索模型,硬索引方案和软索引方案。实验表明,向量空间建模在表示分层音乐信息方面是有效的,使用15秒音乐片段作为查询,前5名的检索准确率达到82.5%。软索引通常优于硬索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1