E. Gonsoroski, Y. Ahn, E. Harville, Nathaniel Countess, M. Lichtveld, K. Pan, L. Beitsch, S. Sherchan, C. Uejio
{"title":"Classifying Building Roof Damage Using High Resolution Imagery for Disaster Recovery","authors":"E. Gonsoroski, Y. Ahn, E. Harville, Nathaniel Countess, M. Lichtveld, K. Pan, L. Beitsch, S. Sherchan, C. Uejio","doi":"10.14358/pers.22-00106r2","DOIUrl":null,"url":null,"abstract":"Post-hurricane damage assessments are often costly and time-consuming. Remotely sensed data provides a complementary method of data collection that can be completed comparatively quickly and at relatively low cost. This study focuses on 15 Florida counties impacted by Hurricane Michael\n (2018), which had category 5 strength winds at landfall. The present study evaluates the ability of aerial imagery collected to cost-effectively measure blue tarps on buildings for disaster impact and recovery. A support vector machine model classified blue tarp, and parcels received a damage\n indicator based on the model's prediction. The model had an overall accuracy of 85.3% with a sensitivity of 74% and a specificity of 96.7%. The model results indicated approximately 7% of all parcels (27 926 residential and 4431 commercial parcels) in the study area as having blue tarp present.\n The study results may benefit jurisdictions that lacked financial resources to conduct on-the-ground damage assessments.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00106r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Post-hurricane damage assessments are often costly and time-consuming. Remotely sensed data provides a complementary method of data collection that can be completed comparatively quickly and at relatively low cost. This study focuses on 15 Florida counties impacted by Hurricane Michael
(2018), which had category 5 strength winds at landfall. The present study evaluates the ability of aerial imagery collected to cost-effectively measure blue tarps on buildings for disaster impact and recovery. A support vector machine model classified blue tarp, and parcels received a damage
indicator based on the model's prediction. The model had an overall accuracy of 85.3% with a sensitivity of 74% and a specificity of 96.7%. The model results indicated approximately 7% of all parcels (27 926 residential and 4431 commercial parcels) in the study area as having blue tarp present.
The study results may benefit jurisdictions that lacked financial resources to conduct on-the-ground damage assessments.