Improvement of multisensor data fusion on track loss in clutter

Cui Ningzhou, Xie Weixin, Yu Xiongnan, Ma Yuanliang
{"title":"Improvement of multisensor data fusion on track loss in clutter","authors":"Cui Ningzhou, Xie Weixin, Yu Xiongnan, Ma Yuanliang","doi":"10.1109/ICR.1996.574592","DOIUrl":null,"url":null,"abstract":"Improvement of multisensor data fusion on track loss in clutter is studied analytically in this paper. Calculating the transition probability density function of the fusion prediction error, the authors have analyzed the dependence of the fusion track loss statistics, such as mean time to lose track and cumulative probability of having lost track, on the clutter spatial density for nearest-neighbor association. The results show that multisensor data fusion can improve the tracking performance in clutter with low track loss probability.","PeriodicalId":144063,"journal":{"name":"Proceedings of International Radar Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.1996.574592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improvement of multisensor data fusion on track loss in clutter is studied analytically in this paper. Calculating the transition probability density function of the fusion prediction error, the authors have analyzed the dependence of the fusion track loss statistics, such as mean time to lose track and cumulative probability of having lost track, on the clutter spatial density for nearest-neighbor association. The results show that multisensor data fusion can improve the tracking performance in clutter with low track loss probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杂波环境下航迹丢失的多传感器数据融合改进
本文分析研究了多传感器数据融合在杂波环境下航迹丢失的改进问题。通过计算融合预测误差的转移概率密度函数,分析了平均失迹时间和累计失迹概率等融合航迹损失统计量对最近邻关联的杂波空间密度的依赖关系。结果表明,多传感器数据融合可以在低航迹损失的情况下提高杂波环境下的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive beamforming of thinned stepped frequency waveforms applied to imaging Improvements on the range alignment of the motion compensation for ISAR imaging Prediction and representation for wideband signatures of radar targets Recurrent neural network for high-resolution radar ship target recognition The skew-canceling method in spatial-temporal processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1