Slate: Enabling Workload-Aware Efficient Multiprocessing for Modern GPGPUs

Tyler N. Allen, Xizhou Feng, Rong Ge
{"title":"Slate: Enabling Workload-Aware Efficient Multiprocessing for Modern GPGPUs","authors":"Tyler N. Allen, Xizhou Feng, Rong Ge","doi":"10.1109/IPDPS.2019.00035","DOIUrl":null,"url":null,"abstract":"As GPUs now contribute the majority of computing power for HPC and data centers, improving GPU utilization becomes an important research problem. Sharing GPU among multiple kernels is an effective approach but requires judicious kernel selection and scheduling for optimal gains. In this paper, we present Slate, a software-based workload-aware GPU multiprocessing framework that enables concurrent kernels from different processes to share GPU devices. Slate selects concurrent kernels that have complementary resource demands at run time to minimize interference for individual kernels and improve GPU resource utilization. Slate adjusts the size of application kernels on-the-fly so that kernels readily share, release, and claim resources based on GPU status. It further controls overhead including data transfers and synchronization. We have built a prototype of Slate and evaluated it on a system with a NVIDIA Titan Xp card. Our experiments show that Slate improves system throughput by 11% on average and up to 35% at the best scenario for the tested applications, in comparison to NVIDIA MultiProcess Service (MPS) that uses hardware scheduling and the leftover policy for resource sharing.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

As GPUs now contribute the majority of computing power for HPC and data centers, improving GPU utilization becomes an important research problem. Sharing GPU among multiple kernels is an effective approach but requires judicious kernel selection and scheduling for optimal gains. In this paper, we present Slate, a software-based workload-aware GPU multiprocessing framework that enables concurrent kernels from different processes to share GPU devices. Slate selects concurrent kernels that have complementary resource demands at run time to minimize interference for individual kernels and improve GPU resource utilization. Slate adjusts the size of application kernels on-the-fly so that kernels readily share, release, and claim resources based on GPU status. It further controls overhead including data transfers and synchronization. We have built a prototype of Slate and evaluated it on a system with a NVIDIA Titan Xp card. Our experiments show that Slate improves system throughput by 11% on average and up to 35% at the best scenario for the tested applications, in comparison to NVIDIA MultiProcess Service (MPS) that uses hardware scheduling and the leftover policy for resource sharing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slate:为现代gpgpu启用工作负载感知高效多处理
由于GPU目前为高性能计算和数据中心贡献了大部分计算能力,因此提高GPU的利用率成为一个重要的研究问题。在多个内核之间共享GPU是一种有效的方法,但需要明智的内核选择和调度以获得最佳收益。在本文中,我们提出了Slate,一个基于软件的工作负载感知GPU多处理框架,它使来自不同进程的并发内核能够共享GPU设备。Slate选择在运行时具有互补资源需求的并发内核,以最大限度地减少对单个内核的干扰并提高GPU资源利用率。Slate动态调整应用程序内核的大小,以便内核可以根据GPU状态轻松地共享、释放和声明资源。它进一步控制开销,包括数据传输和同步。我们已经建立了一个Slate的原型,并在使用NVIDIA Titan Xp卡的系统上对其进行了评估。我们的实验表明,与使用硬件调度和剩余策略进行资源共享的NVIDIA多进程服务(MPS)相比,Slate将系统吞吐量平均提高了11%,在测试应用程序的最佳场景下可提高35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1