Characterization of a pseudo-DRAM Crossbar Computational Memory Array in 55nm CMOS : (Invited Paper)

Gaspar Tognetti, Jonah P. Sengupta, P. Pouliquen, A. Andreou
{"title":"Characterization of a pseudo-DRAM Crossbar Computational Memory Array in 55nm CMOS : (Invited Paper)","authors":"Gaspar Tognetti, Jonah P. Sengupta, P. Pouliquen, A. Andreou","doi":"10.1109/CISS.2019.8692863","DOIUrl":null,"url":null,"abstract":"As computational needs increase in relation to the growing fields of Internet of Things and Deep Learning, energy-efficient, computational units are needed to bypass DSP units within Von Neumann architectures. A charge-mode vector matrix multiplier (VMM) with compute-in memory capabilities was fabricated in the Global Foundries 55nm LP process. The array is comprised of a 156 row by 512 column crossbar where each row computes a 512 element binary dot product in the charge domain. This normalized analog multiply and accumulate (MAC) is carried out by charge-injection devices who compute a 1-bit multiplication in the charge domain. Preliminary test results show successful, linear output computation in the analog domain to various input vectors that are both digital and multi-level analog. The 156 × 512 compute-in memory, CID array has been simulated to achieve an efficiency of 1.8 TOPs per mW.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As computational needs increase in relation to the growing fields of Internet of Things and Deep Learning, energy-efficient, computational units are needed to bypass DSP units within Von Neumann architectures. A charge-mode vector matrix multiplier (VMM) with compute-in memory capabilities was fabricated in the Global Foundries 55nm LP process. The array is comprised of a 156 row by 512 column crossbar where each row computes a 512 element binary dot product in the charge domain. This normalized analog multiply and accumulate (MAC) is carried out by charge-injection devices who compute a 1-bit multiplication in the charge domain. Preliminary test results show successful, linear output computation in the analog domain to various input vectors that are both digital and multi-level analog. The 156 × 512 compute-in memory, CID array has been simulated to achieve an efficiency of 1.8 TOPs per mW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于55nm CMOS的伪dram交叉条计算存储器阵列的表征(特邀论文)
随着物联网和深度学习领域的不断发展,计算需求不断增加,需要节能的计算单元来绕过冯·诺伊曼架构中的DSP单元。采用globalfoundries 55nm LP工艺制备了具有计算机存储能力的电荷模式矢量矩阵乘法器(VMM)。该数组由156行乘512列的交叉条组成,其中每行计算电荷域中512个元素的二进制点积。这种归一化模拟乘法和累积(MAC)是由电荷注入器件在电荷域中计算1位乘法来实现的。初步的测试结果表明,在模拟域对各种数字和多级模拟输入向量的线性输出计算是成功的。对156 × 512计算机存储器CID阵列进行了仿真,达到了1.8 TOPs / mW的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1