Learning Robust Features for 3D Object Pose Estimation

Christos Papaioannidis, I. Pitas
{"title":"Learning Robust Features for 3D Object Pose Estimation","authors":"Christos Papaioannidis, I. Pitas","doi":"10.1109/ICAS49788.2021.9551126","DOIUrl":null,"url":null,"abstract":"Object pose estimation remains an open and important task for autonomous systems, allowing them to perceive and interact with the surrounding environment. To this end, this paper proposes a 3D object pose estimation method that is suitable for execution on embedded systems. Specifically, a novel multi-task objective function is proposed, in order to train a Convolutional Neural Network (CNN) to extract pose-related features from RGB images, which are subsequently utilized in a Nearest-Neighbor (NN) search-based post-processing step to obtain the final 3D object poses. By utilizing a symmetry-aware term and unit quaternions in the proposed objective function, our method yielded more robust and discriminative features, thus, increasing 3D object pose estimation accuracy when compared to state-of-the-art. In addition, the employed feature extraction network utilizes a lightweight CNN architecture, allowing execution on hardware with limited computational capabilities. Finally, we demonstrate that the proposed method is also able to successfully generalize to previously unseen objects, without the need for extra training.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object pose estimation remains an open and important task for autonomous systems, allowing them to perceive and interact with the surrounding environment. To this end, this paper proposes a 3D object pose estimation method that is suitable for execution on embedded systems. Specifically, a novel multi-task objective function is proposed, in order to train a Convolutional Neural Network (CNN) to extract pose-related features from RGB images, which are subsequently utilized in a Nearest-Neighbor (NN) search-based post-processing step to obtain the final 3D object poses. By utilizing a symmetry-aware term and unit quaternions in the proposed objective function, our method yielded more robust and discriminative features, thus, increasing 3D object pose estimation accuracy when compared to state-of-the-art. In addition, the employed feature extraction network utilizes a lightweight CNN architecture, allowing execution on hardware with limited computational capabilities. Finally, we demonstrate that the proposed method is also able to successfully generalize to previously unseen objects, without the need for extra training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习三维物体姿态估计的鲁棒特征
物体姿态估计仍然是自主系统的一个开放和重要的任务,使它们能够感知周围环境并与之交互。为此,本文提出了一种适合在嵌入式系统上执行的三维物体姿态估计方法。具体而言,提出了一种新的多任务目标函数,用于训练卷积神经网络(CNN)从RGB图像中提取姿态相关特征,然后在基于最近邻(NN)搜索的后处理步骤中使用这些特征来获得最终的3D物体姿态。通过在提出的目标函数中利用对称感知项和单位四元数,我们的方法产生了更具鲁棒性和判别性的特征,因此,与最先进的方法相比,提高了3D物体姿态估计的精度。此外,所采用的特征提取网络采用轻量级CNN架构,允许在计算能力有限的硬件上执行。最后,我们证明了所提出的方法也能够成功地推广到以前未见过的对象,而无需额外的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1