Optimization of mixed-precision iterative refinement using parallelized direct methods

T. Kouya
{"title":"Optimization of mixed-precision iterative refinement using parallelized direct methods","authors":"T. Kouya","doi":"10.1109/ICEET56468.2022.10007230","DOIUrl":null,"url":null,"abstract":"Solving a linear system of equations is one of the most critical tasks in scientific computing, which can be performed using the LINPACK test to evaluate TOP500 supercomputers. We have already implemented SIMDized basic linear computation with AVX2 and confirmed that it performs well via benchmark tests in the x86-64 computing environment, demonstrating that SIMDized can be used to accelerate LU decomposition. In this study, it is further demonstrated that parallelized SIMDized LU decomposition with OpenMP is faster than the serial version, and that the mixed-precision iterative refinement used to obtain quad-double (QD, 212-bit mantissa) approximation is optimizable. As a result, the combination of double-double (DD, 106 bits mantissa) and QD arithmetic for the iterative refinement process is more efficient than the DDMPFR 212-bit combination.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving a linear system of equations is one of the most critical tasks in scientific computing, which can be performed using the LINPACK test to evaluate TOP500 supercomputers. We have already implemented SIMDized basic linear computation with AVX2 and confirmed that it performs well via benchmark tests in the x86-64 computing environment, demonstrating that SIMDized can be used to accelerate LU decomposition. In this study, it is further demonstrated that parallelized SIMDized LU decomposition with OpenMP is faster than the serial version, and that the mixed-precision iterative refinement used to obtain quad-double (QD, 212-bit mantissa) approximation is optimizable. As a result, the combination of double-double (DD, 106 bits mantissa) and QD arithmetic for the iterative refinement process is more efficient than the DDMPFR 212-bit combination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行直接法的混合精度迭代细化优化
求解线性方程组是科学计算中最关键的任务之一,可以使用LINPACK测试来评估TOP500超级计算机。我们已经用AVX2实现了SIMDized的基本线性计算,并通过在x86-64计算环境下的基准测试证实了它的良好性能,表明SIMDized可以用于加速LU分解。在本研究中,进一步证明了OpenMP并行化SIMDized LU分解比串行版本更快,并且用于获得四双(QD, 212位尾数)近似的混合精度迭代细化是可优化的。因此,双双(DD, 106位尾数)和QD算法的组合在迭代细化过程中比DDMPFR 212位组合更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of IoT-based SMART Monitoring System for Hydro-Powered Generator Novel Scheme for Mutual Authentication to Isolate Sinkhole Attack in Wireless Sensor Networks A Stackelberg Game for Balancing Profits in IoT Ecosystem Efficient Electric Vehicle Charger Based on Wide Band-gap Materials for V2G and G2V. Image De-noising and Edge Segmentation using Bilateral Filtering and Gabor-cut for Edge Representation of a Breast Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1