{"title":"Quantum Chemistry Research of Interaction between 3D-Transition Metal Ions and a Defective Graphene on the Supercomputer Base","authors":"N. Khokhriakov, S. Melchor","doi":"10.14529/jsfi180314","DOIUrl":null,"url":null,"abstract":"Quantum chemistry research is presented in the article, and it concerns the interaction within the complexes formed by the defective graphene clusters and ions of 3d-transition metals V,Cr,Mn, Fe,Co,Ni,Cu. The charges of all regarded ions were +1. All calculations were made at UDFT B3LYP/6-31G level of theory with the BSSE error taken into account. The strongest interaction with the defective clusters is observed in the case of Co+ ion. At the same time, this ion has demonstrated rather weak interaction with the defect-free graphene. Thus, the presence of Co+ in the reaction media increases probability of defect formation with the further forming of short nanotubes and curved carbon clusters with complex topology of their own.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi180314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum chemistry research is presented in the article, and it concerns the interaction within the complexes formed by the defective graphene clusters and ions of 3d-transition metals V,Cr,Mn, Fe,Co,Ni,Cu. The charges of all regarded ions were +1. All calculations were made at UDFT B3LYP/6-31G level of theory with the BSSE error taken into account. The strongest interaction with the defective clusters is observed in the case of Co+ ion. At the same time, this ion has demonstrated rather weak interaction with the defect-free graphene. Thus, the presence of Co+ in the reaction media increases probability of defect formation with the further forming of short nanotubes and curved carbon clusters with complex topology of their own.