Poster: INSANE – A Uniform Middleware API for Differentiated Quality using Heterogeneous Acceleration Techniques at the Network Edge

Lorenzo Rosa, Andrea Garbugli
{"title":"Poster: INSANE – A Uniform Middleware API for Differentiated Quality using Heterogeneous Acceleration Techniques at the Network Edge","authors":"Lorenzo Rosa, Andrea Garbugli","doi":"10.1109/ICDCS54860.2022.00134","DOIUrl":null,"url":null,"abstract":"Next-generation AI applications benefit from executing close to the network edge to better exploit co-locality to datasources and controlled actuators, and to meet stringent latency requirements. In the edge-enabled cloud continuum, time and safety-critical traffic coexists with best-effort flows, resulting in heterogeneous requirements that current networking middleware and frameworks struggle to support. This paper proposes INSANE, INtegrated Selective Acceleration at the Network Edge, the first edge-oriented middleware that integrates different network acceleration techniques (XDP, DPDK, RDMA, and TSN) within the same data distribution service. INSANE offers a uniform and simple interface, useful to support common data distribution patterns, that allow developers to exploit at runtime the most suitable network technology available in the dynamically determined deployment environment.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Next-generation AI applications benefit from executing close to the network edge to better exploit co-locality to datasources and controlled actuators, and to meet stringent latency requirements. In the edge-enabled cloud continuum, time and safety-critical traffic coexists with best-effort flows, resulting in heterogeneous requirements that current networking middleware and frameworks struggle to support. This paper proposes INSANE, INtegrated Selective Acceleration at the Network Edge, the first edge-oriented middleware that integrates different network acceleration techniques (XDP, DPDK, RDMA, and TSN) within the same data distribution service. INSANE offers a uniform and simple interface, useful to support common data distribution patterns, that allow developers to exploit at runtime the most suitable network technology available in the dynamically determined deployment environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:疯狂-在网络边缘使用异构加速技术实现差异化质量的统一中间件API
下一代人工智能应用程序受益于靠近网络边缘执行,以更好地利用数据源和受控执行器的共局地性,并满足严格的延迟要求。在支持边缘的云连续体中,时间和安全关键型流量与尽力而为流共存,导致当前网络中间件和框架难以支持的异构需求。本文提出了疯狂的,集成的选择性加速在网络边缘,第一个面向边缘的中间件集成不同的网络加速技术(XDP, DPDK, RDMA和TSN)在同一数据分发服务。insanity提供了统一而简单的接口,有助于支持常见的数据分布模式,允许开发人员在运行时利用动态确定的部署环境中可用的最合适的网络技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1