A burst change detection algorithm for data streams

Xian-fei Yang, Jian-pei Zhang, Yang Jing, Li Xiang
{"title":"A burst change detection algorithm for data streams","authors":"Xian-fei Yang, Jian-pei Zhang, Yang Jing, Li Xiang","doi":"10.1109/CINC.2010.5643822","DOIUrl":null,"url":null,"abstract":"Burst Change of probability distribution at any moment is an important characteristic in data streams. When it has happened, data mining algorithm must adapt itself to new probability distribution. So how to detect burst change in data streams is an important part of data stream mining. In this paper, we proposed an algorithm BCDADS to detect it by using hoeffding theorem and independent identical distribution central limit theorem. Theory and experiment indicated this algorithm can effectively detect burst change in data streams.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Burst Change of probability distribution at any moment is an important characteristic in data streams. When it has happened, data mining algorithm must adapt itself to new probability distribution. So how to detect burst change in data streams is an important part of data stream mining. In this paper, we proposed an algorithm BCDADS to detect it by using hoeffding theorem and independent identical distribution central limit theorem. Theory and experiment indicated this algorithm can effectively detect burst change in data streams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据流的突发变化检测算法
概率分布在任意时刻的变化是数据流的一个重要特征。当这种情况发生时,数据挖掘算法必须适应新的概率分布。因此,如何检测数据流中的突发变化是数据流挖掘的重要组成部分。本文利用hoeffding定理和独立同分布中心极限定理,提出了一种BCDADS检测算法。理论和实验表明,该算法能有效检测数据流中的突发变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1