A multiclass classification method based on multiple pairwise classifiers

Tomoyuki Hamamura, H. Mizutani, Bunpei Irie
{"title":"A multiclass classification method based on multiple pairwise classifiers","authors":"Tomoyuki Hamamura, H. Mizutani, Bunpei Irie","doi":"10.1109/ICDAR.2003.1227774","DOIUrl":null,"url":null,"abstract":"In this paper, a new method of composing a multi-classclassifier using pairwise classifiers is proposed. A\"Resemblance Model\" is exploited to calculate aposteriori probability for combining pairwise classifiers.We proved the validity of this model by usingapproximation of a posteriori probability formula. Usingthis theory, we can obtain the optimal decision. Anexperimental result of handwritten numeral recognition ispresented, supporting the effectiveness of our method.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, a new method of composing a multi-classclassifier using pairwise classifiers is proposed. A"Resemblance Model" is exploited to calculate aposteriori probability for combining pairwise classifiers.We proved the validity of this model by usingapproximation of a posteriori probability formula. Usingthis theory, we can obtain the optimal decision. Anexperimental result of handwritten numeral recognition ispresented, supporting the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于多个成对分类器的多类分类方法
提出了一种利用两两分类器组成多分类器的新方法。利用“相似性模型”计算成对分类器组合的后验概率。我们利用后验概率公式的近似证明了该模型的有效性。利用这一理论,我们可以得到最优决策。最后给出了手写体数字识别的实验结果,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1