{"title":"Grid Connected PV Systems Fault Detection using K-Means Clustering Algorithm","authors":"Khalil Benmouiza","doi":"10.46338/ijetae0523_07","DOIUrl":null,"url":null,"abstract":"—Efficiency in photovoltaic (PV) energy production is significantly influenced by various electrical, environmental, and manufacturing-related factors. These variables often lead to a range of PV generator faults, compromising the system's performance and the overall grid's safety. The current fault detection methods can be complex and resource-intensive. In this paper, we propose a novel and efficient grid-connected PV system fault detection mechanism using the k-means clustering algorithm. Our approach categorizes the possible faults based on clustering the output PV and grid powers under healthy and faulty conditions. A comparison between centroid locations of both conditions leads to fault categorization. The findings demonstrate the efficacy of the proposed technique for addressing localized faults in grid-tied PV systems without the need for complicated calculations. The technique is both cost-effective and accurate, with a straightforward application that can be easily adopted by all stakeholders. This method enables users to safeguard their PV system's health and ensure the more comprehensive grid's safety.","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae0523_07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
—Efficiency in photovoltaic (PV) energy production is significantly influenced by various electrical, environmental, and manufacturing-related factors. These variables often lead to a range of PV generator faults, compromising the system's performance and the overall grid's safety. The current fault detection methods can be complex and resource-intensive. In this paper, we propose a novel and efficient grid-connected PV system fault detection mechanism using the k-means clustering algorithm. Our approach categorizes the possible faults based on clustering the output PV and grid powers under healthy and faulty conditions. A comparison between centroid locations of both conditions leads to fault categorization. The findings demonstrate the efficacy of the proposed technique for addressing localized faults in grid-tied PV systems without the need for complicated calculations. The technique is both cost-effective and accurate, with a straightforward application that can be easily adopted by all stakeholders. This method enables users to safeguard their PV system's health and ensure the more comprehensive grid's safety.