Hierarchical Action Embedding for Effective Autonomous Penetration Testing

H. Nguyen, T. Uehara
{"title":"Hierarchical Action Embedding for Effective Autonomous Penetration Testing","authors":"H. Nguyen, T. Uehara","doi":"10.1109/QRS-C57518.2022.00030","DOIUrl":null,"url":null,"abstract":"Penetration testing is an efficient technique in cyber-security. Using reinforcement learning to enhance the automation and accuracy of penetration testing is a promising approach. However, intricate network systems and the lack of a cyber-security knowledge base remain obstacles to this approach. Here, we propose a hierarchical action embedding that represents penetration testing action space. It helps improve the tactic of re-inforcement learning agents in complicated network scenarios by indicating the relation between actions using MITRE ATT&CK knowledge. The results of three testing configurations s how that the hierarchical action embedding improves the effectiveness of reinforcement learning compared to previous algorithms.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Penetration testing is an efficient technique in cyber-security. Using reinforcement learning to enhance the automation and accuracy of penetration testing is a promising approach. However, intricate network systems and the lack of a cyber-security knowledge base remain obstacles to this approach. Here, we propose a hierarchical action embedding that represents penetration testing action space. It helps improve the tactic of re-inforcement learning agents in complicated network scenarios by indicating the relation between actions using MITRE ATT&CK knowledge. The results of three testing configurations s how that the hierarchical action embedding improves the effectiveness of reinforcement learning compared to previous algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效自主渗透测试的分层动作嵌入
渗透测试是一种有效的网络安全技术。利用强化学习来提高渗透测试的自动化和准确性是一种很有前途的方法。然而,复杂的网络系统和缺乏网络安全知识库仍然是这种方法的障碍。在这里,我们提出了一种表示渗透测试动作空间的分层动作嵌入。通过使用MITRE ATT&CK知识指示动作之间的关系,有助于改进复杂网络场景下强化学习智能体的策略。三种测试配置的结果表明,与以前的算法相比,分层动作嵌入提高了强化学习的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Bug Prediction based on Complex Network Considering Control Flow A Fault Localization Method Based on Similarity Weighting with Unlabeled Test Cases What Should Abeeha do? an Activity for Phishing Awareness The Real-Time General Display and Control Platform Designing Method based on Software Product Line Code Search Method Based on Multimodal Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1