Web Table Retrieval using Multimodal Deep Learning

Roee Shraga, Haggai Roitman, Guy Feigenblat, Mustafa Canim
{"title":"Web Table Retrieval using Multimodal Deep Learning","authors":"Roee Shraga, Haggai Roitman, Guy Feigenblat, Mustafa Canim","doi":"10.1145/3397271.3401120","DOIUrl":null,"url":null,"abstract":"We address the web table retrieval task, aiming to retrieve and rank web tables as whole answers to a given information need. To this end, we formally define web tables as multimodal objects. We then suggest a neural ranking model, termed MTR, which makes a novel use of Gated Multimodal Units (GMUs) to learn a joint-representation of the query and the different table modalities. We further enhance this model with a co-learning approach which utilizes automatically learned query-independent and query-dependent \"helper'' labels. We evaluate the proposed solution using both ad hoc queries (WikiTables) and natural language questions (GNQtables). Overall, we demonstrate that our approach surpasses the performance of previously studied state-of-the-art baselines.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We address the web table retrieval task, aiming to retrieve and rank web tables as whole answers to a given information need. To this end, we formally define web tables as multimodal objects. We then suggest a neural ranking model, termed MTR, which makes a novel use of Gated Multimodal Units (GMUs) to learn a joint-representation of the query and the different table modalities. We further enhance this model with a co-learning approach which utilizes automatically learned query-independent and query-dependent "helper'' labels. We evaluate the proposed solution using both ad hoc queries (WikiTables) and natural language questions (GNQtables). Overall, we demonstrate that our approach surpasses the performance of previously studied state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多模态深度学习的Web表检索
我们解决了web表检索任务,旨在检索和排序web表作为一个给定的信息需求的整体答案。为此,我们正式将web表定义为多模态对象。然后,我们提出了一种称为MTR的神经排序模型,该模型新颖地使用了门控多模态单元(gmu)来学习查询和不同表模态的联合表示。我们通过一种共同学习方法进一步增强了该模型,该方法利用自动学习的查询独立和查询依赖的“助手”标签。我们使用临时查询(wikittables)和自然语言问题(GNQtables)来评估提议的解决方案。总的来说,我们证明了我们的方法超越了以前研究的最先进的基线的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1