Using a Bayesian Posterior Density in the Design of Perturbation Experiments for Network Reconstruction

A. Almudevar, P. Salzman
{"title":"Using a Bayesian Posterior Density in the Design of Perturbation Experiments for Network Reconstruction","authors":"A. Almudevar, P. Salzman","doi":"10.1109/CIBCB.2005.1594920","DOIUrl":null,"url":null,"abstract":"Gene perturbation experiments are commonly used in the reconstruction of gene regulatory networks. Because such experiments are often difficult to perform, it is important to predict on a rational basis those experiments likely to result in the greatest resolution of model uncertainty. When a method for constructing Bayesian posterior densities on the space of network models is available, this provides a means with which to estimate the expected reduction in entropy that would result from a given perturbation experiment. We define an algorithm for selecting perturbation experiments based on this idea, and demonstrate it using a simulation study using a Bayesian network model.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Gene perturbation experiments are commonly used in the reconstruction of gene regulatory networks. Because such experiments are often difficult to perform, it is important to predict on a rational basis those experiments likely to result in the greatest resolution of model uncertainty. When a method for constructing Bayesian posterior densities on the space of network models is available, this provides a means with which to estimate the expected reduction in entropy that would result from a given perturbation experiment. We define an algorithm for selecting perturbation experiments based on this idea, and demonstrate it using a simulation study using a Bayesian network model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯后验密度的网络重构扰动实验设计
基因扰动实验是重建基因调控网络的常用方法。因为这样的实验通常很难进行,所以在合理的基础上预测那些可能导致模型不确定性的最大分辨率的实验是很重要的。当一种在网络模型空间上构造贝叶斯后验密度的方法可用时,这就提供了一种方法来估计由给定扰动实验产生的熵的预期减少。我们在此基础上定义了一种选择扰动实验的算法,并利用贝叶斯网络模型进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Internet-based Melanoma Diagnostic System - Toward the Practical Application - Network Motifs, Feedback Loops and the Dynamics of Genetic Regulatory Networks Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1