An Empirical Study of the GraphSAGE and Word2vec Algorithms for Graph Multiclass Classification

P. Hajibabaee, Masoud Malekzadeh, Maryam Heidari, Samira Zad, Ozlem Uzuner, James H. Jones
{"title":"An Empirical Study of the GraphSAGE and Word2vec Algorithms for Graph Multiclass Classification","authors":"P. Hajibabaee, Masoud Malekzadeh, Maryam Heidari, Samira Zad, Ozlem Uzuner, James H. Jones","doi":"10.1109/iemcon53756.2021.9623238","DOIUrl":null,"url":null,"abstract":"A fundamental task in machine learning involves node classification. However, when considering the context of large graph data, this problem becomes much more challenging. In this paper, we use the Wikipedia hyperlink dataset to evaluate our semi-supervised node classification model. Given a small set of labeled nodes, we develop a multiclass classifier that utilizes the network structure as well as textual descriptions of nodes to predict the most probable category(label) for each test node in a semi-supervised setting. Our experiment shows promising results for graph multiclass classification using directed graphSAGE and word2vec algorithms together. We also visualize the node embeddings in 2D using the t-SNE method.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A fundamental task in machine learning involves node classification. However, when considering the context of large graph data, this problem becomes much more challenging. In this paper, we use the Wikipedia hyperlink dataset to evaluate our semi-supervised node classification model. Given a small set of labeled nodes, we develop a multiclass classifier that utilizes the network structure as well as textual descriptions of nodes to predict the most probable category(label) for each test node in a semi-supervised setting. Our experiment shows promising results for graph multiclass classification using directed graphSAGE and word2vec algorithms together. We also visualize the node embeddings in 2D using the t-SNE method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraphSAGE和Word2vec算法在图多类分类中的实证研究
机器学习中的一项基本任务涉及节点分类。然而,当考虑到大型图形数据的上下文时,这个问题变得更具挑战性。在本文中,我们使用维基百科的超链接数据集来评估我们的半监督节点分类模型。给定一小组标记节点,我们开发了一个多类分类器,该分类器利用网络结构和节点的文本描述来预测半监督设置中每个测试节点最可能的类别(标签)。我们的实验显示了将有向graphSAGE和word2vec算法结合使用的图多类分类的良好结果。我们还使用t-SNE方法在2D中可视化节点嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximization of the User Association of a Low-Power Tier Deploying Biased User Association Scheme in 5G Multi-Tier Heterogeneous Network A Deep Reinforcement Learning: Location-based Resource Allocation for Congested C-V2X Scenario A Deep Learning Approach to Predict Chronic Kidney Disease in Human Evaluation of a bio-socially inspired secure DSA scheme using testbed-calibrated hybrid simulations Siamese Network based Pulse and Signal Attribute Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1