On the Advantages of Weighted L1-Norm Support Vector Learning for Unbalanced Binary Classification Problems

T. Eitrich, Bruno Lang
{"title":"On the Advantages of Weighted L1-Norm Support Vector Learning for Unbalanced Binary Classification Problems","authors":"T. Eitrich, Bruno Lang","doi":"10.1109/IS.2006.348483","DOIUrl":null,"url":null,"abstract":"In this paper we analyze support vector machine classification using the soft margin approach that allows for errors and margin violations during the training stage. Two models for learning the separating hyperplane do exist. We study the behavior of the optimization algorithms in terms of training characteristics and test accuracy for unbalanced data sets. The main goal of our work is to compare the features of the resulting classification functions, which are mainly defined by the support vectors arising during the support vector machine training","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we analyze support vector machine classification using the soft margin approach that allows for errors and margin violations during the training stage. Two models for learning the separating hyperplane do exist. We study the behavior of the optimization algorithms in terms of training characteristics and test accuracy for unbalanced data sets. The main goal of our work is to compare the features of the resulting classification functions, which are mainly defined by the support vectors arising during the support vector machine training
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加权l1 -范数支持向量学习在非平衡二分类问题中的优势
在本文中,我们使用软边界方法分析支持向量机分类,该方法允许在训练阶段出现错误和边界违反。有两种学习分离超平面的模型。我们从训练特征和非平衡数据集的测试精度方面研究了优化算法的行为。我们工作的主要目标是比较结果分类函数的特征,这些函数主要由支持向量机训练过程中产生的支持向量定义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1