ROBNCA: Robust Network Component Analysis for recovering transcription factor activities

Amina Noor, A. Ahmad, E. Serpedin, M. Nounou, H. Nounou
{"title":"ROBNCA: Robust Network Component Analysis for recovering transcription factor activities","authors":"Amina Noor, A. Ahmad, E. Serpedin, M. Nounou, H. Nounou","doi":"10.1109/GENSIPS.2013.6735919","DOIUrl":null,"url":null,"abstract":"Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF) - gene regulations. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. ROBNCA algorithm provides a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared to FastNCA and the Non-iterative NCA (NI-NCA) and is shown to estimate the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, and/or amount of outliers in case of synthetic data. The run time of the ROBNCA algorithm is comparable to that of FastNCA, and is hundreds of times faster than NI-NCA.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF) - gene regulations. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. ROBNCA algorithm provides a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared to FastNCA and the Non-iterative NCA (NI-NCA) and is shown to estimate the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, and/or amount of outliers in case of synthetic data. The run time of the ROBNCA algorithm is comparable to that of FastNCA, and is hundreds of times faster than NI-NCA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROBNCA:恢复转录因子活性的稳健网络成分分析
网络成分分析(NCA)是利用基因表达数据和转录因子基因调控的先验信息重构转录因子活性(TFA)的一种有效方法。我们提出鲁棒网络成分分析(ROBNCA),这是一种新的迭代算法,可以明确地模拟微阵列数据中可能的异常值。ROBNCA算法为估计连接矩阵提供了封闭形式的解决方案,这在以前的贡献中是不可用的。ROBNCA算法与FastNCA和非迭代NCA (NI-NCA)进行了比较,结果表明,无论噪声变化,在合成数据的情况下,与FastNCA和NI-NCA相比,ROBNCA算法估计TF活性谱以及TF基因控制强度矩阵的准确性要高得多。ROBNCA算法的运行时间与FastNCA相当,比NI-NCA快数百倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromised intervention policies for phenotype alteration SeqBBS: A change-point model based algorithm and R package for searching CNV regions via the ratio of sequencing reads Optimal Bayesian MMSE estimation of the coefficient of determination for discrete prediction Boolean model to experimental validation: A preliminary attempt Inference of genetic regulatory networks with unknown covariance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1