On preferences of general two-sided tests with applications to Kolmogorov–Smirnov-type tests

J. Rahnenführer
{"title":"On preferences of general two-sided tests with applications to Kolmogorov–Smirnov-type tests","authors":"J. Rahnenführer","doi":"10.1524/STND.21.2.149.19004","DOIUrl":null,"url":null,"abstract":"Power functions of tests for Gaussian shift experiments on infinite dimensional Hilbert spaces usually can not be calculated explicitly. Therefore one analyzes the behavior of such tests in the neighborhood of the null hypothesis. Useful measures to compare the quality of different testing procedures are the gradient of a one-sided and the curvature of a two-sided test in the null hypothesis. Janssen (1995) showed that a principal component decomposition of the curvature exists based on a Hilbert–Schmidt operator. It follows that these tests have only acceptable power for a finite number of directions. In this paper we prove an even stronger general result for Gauss shifts under just mild additional assumptions. A certain optimality property of a one-sided test implicates that for a small level α the corresponding two-sided test acts only in a single direction. The results are applied to Kolmogorov–Smirnov type tests and the signal detection problem.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/STND.21.2.149.19004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Power functions of tests for Gaussian shift experiments on infinite dimensional Hilbert spaces usually can not be calculated explicitly. Therefore one analyzes the behavior of such tests in the neighborhood of the null hypothesis. Useful measures to compare the quality of different testing procedures are the gradient of a one-sided and the curvature of a two-sided test in the null hypothesis. Janssen (1995) showed that a principal component decomposition of the curvature exists based on a Hilbert–Schmidt operator. It follows that these tests have only acceptable power for a finite number of directions. In this paper we prove an even stronger general result for Gauss shifts under just mild additional assumptions. A certain optimality property of a one-sided test implicates that for a small level α the corresponding two-sided test acts only in a single direction. The results are applied to Kolmogorov–Smirnov type tests and the signal detection problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般双侧检验的偏好及其在柯尔莫哥洛夫-斯米尔诺夫型检验中的应用
无限维希尔伯特空间上高斯位移实验的幂函数通常不能显式计算。因此,可以分析这种检验在零假设的邻域内的行为。比较不同检验程序质量的有用度量是零假设中单侧检验的梯度和双侧检验的曲率。Janssen(1995)表明存在基于Hilbert-Schmidt算子的曲率主成分分解。由此可见,这些检验只对有限数量的方向具有可接受的效力。在本文中,我们证明了在轻微附加假设下高斯位移的一个更强的一般结果。单侧检验的某种最优性意味着对于小水平α,相应的双侧检验只在单一方向上起作用。结果应用于Kolmogorov-Smirnov型试验和信号检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BAYESIAN APPROACH TO INCORPORATE MODEL AMBIGUITY IN A DYNAMIC RISK MEASURE Efficient estimation of a linear functional of a bivariate distribution with equal, but unknown, marginals: The minimum chi-square approach Locally asymptotically optimal tests in semiparametric generalized linear models in the 2-sample-problem Maximum likelihood estimator in a two-phase nonlinear random regression model Confidence estimation of the covariance function of stationary and locally stationary processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1